Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38475072

RESUMEN

Understanding the association between subjective emotional experiences and physiological signals is of practical and theoretical significance. Previous psychophysiological studies have shown a linear relationship between dynamic emotional valence experiences and facial electromyography (EMG) activities. However, whether and how subjective emotional valence dynamics relate to facial EMG changes nonlinearly remains unknown. To investigate this issue, we re-analyzed the data of two previous studies that measured dynamic valence ratings and facial EMG of the corrugator supercilii and zygomatic major muscles from 50 participants who viewed emotional film clips. We employed multilinear regression analyses and two nonlinear machine learning (ML) models: random forest and long short-term memory. In cross-validation, these ML models outperformed linear regression in terms of the mean squared error and correlation coefficient. Interpretation of the random forest model using the SHapley Additive exPlanation tool revealed nonlinear and interactive associations between several EMG features and subjective valence dynamics. These findings suggest that nonlinear ML models can better fit the relationship between subjective emotional valence dynamics and facial EMG than conventional linear models and highlight a nonlinear and complex relationship. The findings encourage emotion sensing using facial EMG and offer insight into the subjective-physiological association.


Asunto(s)
Emociones , Expresión Facial , Humanos , Electromiografía , Emociones/fisiología , Cara , Músculos Faciales/fisiología , Aprendizaje Automático
2.
Sensors (Basel) ; 23(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37430579

RESUMEN

In classification tasks, such as face recognition and emotion recognition, multimodal information is used for accurate classification. Once a multimodal classification model is trained with a set of modalities, it estimates the class label by using the entire modality set. A trained classifier is typically not formulated to perform classification for various subsets of modalities. Thus, the model would be useful and portable if it could be used for any subset of modalities. We refer to this problem as the multimodal portability problem. Moreover, in the multimodal model, classification accuracy is reduced when one or more modalities are missing. We term this problem the missing modality problem. This article proposes a novel deep learning model, termed KModNet, and a novel learning strategy, termed progressive learning, to simultaneously address missing modality and multimodal portability problems. KModNet, formulated with the transformer, contains multiple branches corresponding to different k-combinations of the modality set S. KModNet is trained using a multi-step progressive learning framework, where the k-th step uses a k-modal model to train different branches up to the k-th combination branch. To address the missing modality problem, the training multimodal data is randomly ablated. The proposed learning framework is formulated and validated using two multimodal classification problems: audio-video-thermal person classification and audio-video emotion classification. The two classification problems are validated using the Speaking Faces, RAVDESS, and SAVEE datasets. The results demonstrate that the progressive learning framework enhances the robustness of multimodal classification, even under the conditions of missing modalities, while being portable to different modality subsets.


Asunto(s)
Suministros de Energía Eléctrica , Reconocimiento Facial , Humanos , Emociones , Reconocimiento en Psicología
3.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36679673

RESUMEN

Human pose prediction is vital for robot applications such as human-robot interaction and autonomous control of robots. Recent prediction methods often use deep learning and are based on a 3D human skeleton sequence to predict future poses. Even if the starting motions of 3D human skeleton sequences are very similar, their future poses will have variety. It makes it difficult to predict future poses only from a given human skeleton sequence. Meanwhile, when carefully observing human motions, we can find that human motions are often affected by objects or other people around the target person. We consider that the presence of surrounding objects is an important clue for the prediction. This paper proposes a method for predicting the future skeleton sequence by incorporating the surrounding situation into the prediction model. The proposed method uses a feature of an image around the target person as the surrounding information. We confirmed the performance improvement of the proposed method through evaluations on publicly available datasets. As a result, the prediction accuracy was improved for object-related and human-related motions.


Asunto(s)
Algoritmos , Sistema Musculoesquelético , Humanos , Movimiento (Física) , Esqueleto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA