Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 127(11): 117203, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34558933

RESUMEN

Artificial spin ice systems have opened experimental windows into a range of model magnetic systems through the control of interactions among nanomagnet moments. This control has previously been enabled by altering the nanomagnet size and the geometry of their placement. Here we demonstrate that the interactions in artificial spin ice can be further controlled by including a soft ferromagnetic underlayer below the moments. Such a substrate also breaks the symmetry in the array when magnetized, introducing a directional component to the correlations. Using spatially resolved magneto-optical Kerr effect microscopy to image the demagnetized ground states, we show that the correlation of the demagnetized states depends on the direction of the underlayer magnetization. Further, the relative interaction strength of nearest and next-nearest neighbors varies significantly with the array geometry. We exploit this feature to induce frustration in an inherently unfrustrated square lattice geometry, demonstrating new possibilities for effective geometries in two-dimensional nanomagnetic systems.

2.
Nano Lett ; 18(1): 546-552, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29236505

RESUMEN

A magnetic, metallic inverse opal fabricated by infiltration into a silica nanosphere template assembled from spheres with diameters less than 100 nm is an archetypal example of a "metalattice". In traditional quantum confined structures such as dots, wires, and thin films, the physical dynamics in the free dimensions is typically largely decoupled from the behavior in the confining directions. In a metalattice, the confined and extended degrees of freedom cannot be separated. Modeling predicts that magnetic metalattices should exhibit multiple topologically distinct magnetic phases separated by sharp transitions in their hysteresis curves as their spatial dimensions become comparable to and smaller than the magnetic exchange length, potentially enabling an interesting class of "spin-engineered" magnetic materials. The challenge to synthesizing magnetic inverse opal metalattices from templates assembled from sub-100 nm spheres is in infiltrating the nanoscale, tortuous voids between the nanospheres void-free with a suitable magnetic material. Chemical fluid deposition from supercritical carbon dioxide could be a viable approach to void-free infiltration of magnetic metals in view of the ability of supercritical fluids to penetrate small void spaces. However, we find that conventional chemical fluid deposition of the magnetic late transition metal nickel into sub-100 nm silica sphere templates in conventional macroscale reactors produces a film on top of the template that appears to largely block infiltration. Other deposition approaches also face difficulties in void-free infiltration into such small nanoscale templates or require conducting substrates that may interfere with properties measurements. Here we report that introduction of "spatial confinement" into the chemical fluid reactor allows for fabrication of nearly void-free nickel metalattices by infiltration into templates with sphere sizes from 14 to 100 nm. Magnetic measurements suggest that these nickel metalattices behave as interconnected systems rather than as isolated superparamagnetic systems coupled solely by dipolar interactions.

3.
Nat Commun ; 6: 7434, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26151318

RESUMEN

When a three-dimensional ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall conductance. The recent realization of this phenomenon, the quantum anomalous Hall effect, provides a conceptually new platform for studies of 1D transport, distinct from the traditionally studied quantum Hall effects that arise from Landau level formation. An important question arises in this context: how do these 1D edge states evolve as the magnetization is changed from out-of-plane to in-plane? We examine this question by studying the field-tilt-driven crossover from predominantly edge-state transport to diffusive transport in Crx(Bi,Sb)(2-x)Te3 thin films. This crossover manifests itself in a giant, electrically tunable anisotropic magnetoresistance that we explain by employing a Landauer-Büttiker formalism. Our methodology provides a powerful means of quantifying dissipative effects in temperature and chemical potential regimes far from perfect quantization.

4.
Sci Adv ; 1(10): e1500740, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26601138

RESUMEN

Quantized Hall conductance is a generic feature of two-dimensional electronic systems with broken time reversal symmetry. In the quantum anomalous Hall state recently discovered in magnetic topological insulators, time reversal symmetry is believed to be broken by long-range ferromagnetic order, with quantized resistance observed even at zero external magnetic field. We use scanning nanoSQUID (nano-superconducting quantum interference device) magnetic imaging to provide a direct visualization of the dynamics of the quantum phase transition between the two anomalous Hall plateaus in a Cr-doped (Bi,Sb)2Te3 thin film. Contrary to naive expectations based on macroscopic magnetometry, our measurements reveal a superparamagnetic state formed by weakly interacting magnetic domains with a characteristic size of a few tens of nanometers. The magnetic phase transition occurs through random reversals of these local moments, which drive the electronic Hall plateau transition. Surprisingly, we find that the electronic system can, in turn, drive the dynamics of the magnetic system, revealing a subtle interplay between the two coupled quantum phase transitions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA