Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Science ; 188(4187): 468-72, 1975 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-17734364

RESUMEN

For 2 weeks continuous imaging, photometry, and polarimetry observations were made of Jupiter and the Galilean satellites in red and blue light from Pioneer 11. Measurements of Jupiter's north and south polar regions were possible because the spacecraft trajectory was highly inclined to the planet's equatorial plane. One of the highest resolution images obtained is presented here along with a comparison of a sample of our photometric and polarimetric data with a simple model. The data seem consistent with increased molecular scattering at high latitudes.

2.
Science ; 207(4429): 434-9, 1980 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-17833555

RESUMEN

An imaging photopolarimeter aboard Pioneer 11, including a 2.5-centimeter telescope, was used for 2 weeks continuously in August and September 1979 for imaging, photometry, and polarimetry observations of Saturn, its rings, and Titan. A new ring of optical depth < 2 x 10(-3) was discovered at 2.33 Saturn radii and is provisionally named the F ring; it is separated from the A ring by the provisionally named Pioneer division. A division between the B and C rings, a gap near the center of the Cassini division, and detail in the A, B, and C rings have been seen; the nomenclature of divisions and gaps is redefined. The width of the Encke gap is 876 +/- 35 kilometers. The intensity profile and colors are given for the light transmitted by the rings. A mean particle size less, similar 15 meters is indicated; this estimate is model-dependent. The D ring was not seen in any viewing geometry and its existence is doubtful. A satellite, 1979 S 1, was found at 2.53 +/- 0.01 Saturn radii; the same object was observed approximately 16 hours later by other experiments on Pioneer 11. The equatorial radius of Saturn is 60,000 +/- 500 kilometers, and the ratio of the polar to the equatorial radius is 0.912 +/- 0.006. A sample of polarimetric data is compared with models of the vertical structure of Saturn's atmosphere. The variation of the polarization from the center of the disk to the limb in blue light at 88 degrees phase indicates that the density of cloud particles decreases as a function of altitude with a scale height about one-fourth that of the gas. The pressure level at which an optical depth of 1 is reached in the clouds depends on the single-scattering polarizing properties of the clouds; a value similar to that found for the Jovian clouds yields an optical depth of 1 at about 750 millibars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA