Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Brain ; 146(9): 3760-3769, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37043475

RESUMEN

With the advent of gene therapies for amyotrophic lateral sclerosis (ALS), there is a surge in gene testing for this disease. Although there is ample experience with gene testing for C9orf72, SOD1, FUS and TARDBP in familial ALS, large studies exploring genetic variation in all ALS-associated genes in sporadic ALS (sALS) are still scarce. Gene testing in a diagnostic setting is challenging, given the complex genetic architecture of sALS, for which there are genetic variants with large and small effect sizes. Guidelines for the interpretation of genetic variants in gene panels and for counselling of patients are lacking. We aimed to provide a thorough characterization of genetic variability in ALS genes by applying the American College of Medical Genetics and Genomics (ACMG) criteria on whole genome sequencing data from a large cohort of 6013 sporadic ALS patients and 2411 matched controls from Project MinE. We studied genetic variation in 90 ALS-associated genes and applied customized ACMG-criteria to identify pathogenic and likely pathogenic variants. Variants of unknown significance were collected as well. In addition, we determined the length of repeat expansions in C9orf72, ATXN1, ATXN2 and NIPA1 using the ExpansionHunter tool. We found C9orf72 repeat expansions in 5.21% of sALS patients. In 50 ALS-associated genes, we did not identify any pathogenic or likely pathogenic variants. In 5.89%, a pathogenic or likely pathogenic variant was found, most commonly in SOD1, TARDBP, FUS, NEK1, OPTN or TBK1. Significantly more cases carried at least one pathogenic or likely pathogenic variant compared to controls (odds ratio 1.75; P-value 1.64 × 10-5). Isolated risk factors in ATXN1, ATXN2, NIPA1 and/or UNC13A were detected in 17.33% of cases. In 71.83%, we did not find any genetic clues. A combination of variants was found in 2.88%. This study provides an inventory of pathogenic and likely pathogenic genetic variation in a large cohort of sALS patients. Overall, we identified pathogenic and likely pathogenic variants in 11.13% of ALS patients in 38 known ALS genes. In line with the oligogenic hypothesis, we found significantly more combinations of variants in cases compared to controls. Many variants of unknown significance may contribute to ALS risk, but diagnostic algorithms to reliably identify and weigh them are lacking. This work can serve as a resource for counselling and for the assembly of gene panels for ALS. Further characterization of the genetic architecture of sALS is necessary given the growing interest in gene testing in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Estados Unidos , Esclerosis Amiotrófica Lateral/genética , Predisposición Genética a la Enfermedad/genética , Proteína C9orf72/genética , Superóxido Dismutasa-1/genética
2.
Ann Neurol ; 89(4): 686-697, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33389754

RESUMEN

OBJECTIVE: The role of the survival of motor neuron (SMN) gene in amyotrophic lateral sclerosis (ALS) is unclear, with several conflicting reports. A decisive result on this topic is needed, given that treatment options are available now for SMN deficiency. METHODS: In this largest multicenter case control study to evaluate the effect of SMN1 and SMN2 copy numbers in ALS, we used whole genome sequencing data from Project MinE data freeze 2. SMN copy numbers of 6,375 patients with ALS and 2,412 controls were called from whole genome sequencing data, and the reliability of the calls was tested with multiplex ligation-dependent probe amplification data. RESULTS: The copy number distribution of SMN1 and SMN2 between cases and controls did not show any statistical differences (binomial multivariate logistic regression SMN1 p = 0.54 and SMN2 p = 0.49). In addition, the copy number of SMN did not associate with patient survival (Royston-Parmar; SMN1 p = 0.78 and SMN2 p = 0.23) or age at onset (Royston-Parmar; SMN1 p = 0.75 and SMN2 p = 0.63). INTERPRETATION: In our well-powered study, there was no association of SMN1 or SMN2 copy numbers with the risk of ALS or ALS disease severity. This suggests that changing SMN protein levels in the physiological range may not modify ALS disease course. This is an important finding in the light of emerging therapies targeted at SMN deficiencies. ANN NEUROL 2021;89:686-697.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Dosificación de Gen , Humanos , Masculino , Reproducibilidad de los Resultados , Factores de Riesgo , Índice de Severidad de la Enfermedad , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Secuenciación Completa del Genoma
3.
Hum Mol Genet ; 28(13): 2143-2160, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30806671

RESUMEN

Aberrant translational repression is a feature of multiple neurodegenerative diseases. The association between disease-linked proteins and stress granules further implicates impaired stress responses in neurodegeneration. However, our knowledge of the proteins that evade translational repression is incomplete. It is also unclear whether disease-linked proteins influence the proteome under conditions of translational repression. To address these questions, a quantitative proteomics approach was used to identify proteins that evade stress-induced translational repression in arsenite-treated cells expressing either wild-type or amyotrophic lateral sclerosis (ALS)-linked mutant FUS. This study revealed hundreds of proteins that are actively synthesized during stress-induced translational repression, irrespective of FUS genotype. In addition to proteins involved in RNA- and protein-processing, proteins associated with neurodegenerative diseases such as ALS were also actively synthesized during stress. Protein synthesis under stress was largely unperturbed by mutant FUS, although several proteins were found to be differentially expressed between mutant and control cells. One protein in particular, COPBI, was downregulated in mutant FUS-expressing cells under stress. COPBI is the beta subunit of the coat protein I (COPI), which is involved in Golgi to endoplasmic reticulum (ER) retrograde transport. Further investigation revealed reduced levels of other COPI subunit proteins and defects in COPBI-relatedprocesses in cells expressing mutant FUS. Even in the absence of stress, COPBI localization was altered in primary and human stem cell-derived neurons expressing ALS-linked FUS variants. Our results suggest that Golgi to ER retrograde transport may be important under conditions of stress and is perturbed upon the expression of disease-linked proteins such as FUS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Neuronas Motoras/metabolismo , Biosíntesis de Proteínas , Proteína FUS de Unión a ARN/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Arsenitos/farmacología , Línea Celular Tumoral , Proteína Coat de Complejo I/metabolismo , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Humanos , Ratones , Neuronas Motoras/efectos de los fármacos , Mutación , Biosíntesis de Proteínas/efectos de los fármacos , Proteómica , Proteína FUS de Unión a ARN/metabolismo
4.
Curr Opin Neurol ; 34(5): 756-764, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34343141

RESUMEN

PURPOSE OF REVIEW: Amyotrophic lateral sclerosis (ALS) is an archetypal complex disease wherein disease risk and severity are, for the majority of patients, the product of interaction between multiple genetic and environmental factors. We are in a period of unprecedented discovery with new large-scale genome-wide association study (GWAS) and accelerating discovery of risk genes. However, much of the observed heritability of ALS is undiscovered and we are not yet approaching elucidation of the total genetic architecture, which will be necessary for comprehensive disease subclassification. RECENT FINDINGS: We summarize recent developments and discuss the future. New machine learning models will help to address nonlinear genetic interactions. Statistical power for genetic discovery may be boosted by reducing the search-space using cell-specific epigenetic profiles and expanding our scope to include genetically correlated phenotypes. Structural variation, somatic heterogeneity and consideration of environmental modifiers represent significant challenges which will require integration of multiple technologies and a multidisciplinary approach, including clinicians, geneticists and pathologists. SUMMARY: The move away from fully penetrant Mendelian risk genes necessitates new experimental designs and new standards for validation. The challenges are significant, but the potential reward for successful disease subclassification is large-scale and effective personalized medicine.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Estudio de Asociación del Genoma Completo , Humanos , Aprendizaje Automático , Fenotipo
5.
Proc Natl Acad Sci U S A ; 115(6): 1358-1363, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29295933

RESUMEN

Genetic studies of Wallerian degeneration have led to the identification of signaling molecules (e.g., dSarm/Sarm1, Axundead, and Highwire) that function locally in axons to drive degeneration. Here we identify a role for the Drosophila C2H2 zinc finger transcription factor Pebbled [Peb, Ras-responsive element binding protein 1 (RREB1) in mammals] in axon death. Loss of Peb in Drosophila glutamatergic sensory neurons results in either complete preservation of severed axons, or an axon death phenotype where axons fragment into large, continuous segments, rather than completely disintegrate. Peb is expressed in developing and mature sensory neurons, suggesting it is required to establish or maintain their competence to undergo axon death. peb mutant phenotypes can be rescued by human RREB1, and they exhibit dominant genetic interactions with dsarm mutants, linking peb/RREB1 to the axon death signaling cascade. Surprisingly, Peb is only able to fully block axon death signaling in glutamatergic, but not cholinergic sensory neurons, arguing for genetic diversity in axon death signaling programs in different neuronal subtypes. Our findings identify a transcription factor that regulates axon death signaling, and peb mutant phenotypes of partial fragmentation reveal a genetically accessible step in axon death signaling.


Asunto(s)
Axones/patología , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Degeneración Walleriana/patología , Animales , Animales Modificados Genéticamente , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Axones/metabolismo , Neuronas Colinérgicas/patología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Degeneración Walleriana/genética , Degeneración Walleriana/metabolismo , Alas de Animales/inervación , Alas de Animales/metabolismo , Dedos de Zinc/genética
6.
Hum Mutat ; 38(11): 1534-1541, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28714244

RESUMEN

The genetic basis combined with the sporadic occurrence of amyotrophic lateral sclerosis (ALS) suggests a role of de novo mutations in disease pathogenesis. Previous studies provided some evidence for this hypothesis; however, results were conflicting: no genes with recurrent occurring de novo mutations were identified and different pathways were postulated. In this study, we analyzed whole-exome data from 82 new patient-parents trios and combined it with the datasets of all previously published ALS trios (173 trios in total). The per patient de novo rate was not higher than expected based on the general population (P = 0.40). We showed that these mutations are not part of the previously postulated pathways, and gene-gene interaction analysis found no enrichment of interacting genes in this group (P = 0.57). Also, we were able to show that the de novo mutations in ALS patients are located in genes already prone for de novo mutations (P < 1 × 10-15 ). Although the individual effect of rare de novo mutations in specific genes could not be assessed, our results indicate that, in contrast to previous hypothesis, de novo mutations in general do not impose a major burden on ALS risk.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Alelos , Sustitución de Aminoácidos , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Estudios de Casos y Controles , Bases de Datos Genéticas , Femenino , Humanos , Masculino , Tasa de Mutación , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Secuenciación del Exoma , Secuenciación Completa del Genoma
7.
Genomics ; 105(4): 237-41, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25620680

RESUMEN

Runs of homozygosity are common in European populations and are indicative of consanguinity, restricted population size and recessively inherited traits. Here, we map runs of homozygosity (ROHs) in an Irish case-control cohort for amyotrophic lateral sclerosis (ALS), a devastating neurological condition with high heritability yet only partially established genetic cause. We compare the extent of homozygosity in the Irish cohort with a large British cohort and observe that ROHs are longer and more frequent in the Irish population than in the British, and that extent of ROHs is correlated with demographic factors within the island of Ireland. ROHs are also longer and more frequent in ALS cases compared to population-matched controls, supporting the hypothesis that recessively inherited loci play a pathogenic role in ALS. Comparing homozygous haplotypes between cases and controls reveals several potential recessive risk loci for ALS, including a genomic interval spanning ARHGEF1, a compelling ALS candidate gene.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Genes Recesivos , Predisposición Genética a la Enfermedad , Homocigoto , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Esclerosis Amiotrófica Lateral/epidemiología , Estudios de Casos y Controles , Demografía , Femenino , Sitios Genéticos , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Irlanda , Masculino , Persona de Mediana Edad , Riesgo , Población Blanca/genética
8.
Ann Neurol ; 74(5): 699-708, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23836460

RESUMEN

OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is associated with frontotemporal dementia (FTD) in 14% of cases. Five percent report a family history of ALS, and other ALS patients report a family history of other neurodegenerative diseases. The objective of this study was to conduct a family aggregation study of ALS, and neurodegenerative and neuropsychiatric conditions in ALS kindreds and matched healthy controls. The aim was to determine the true rate of familial ALS and the recurrence risk of ALS in family members, and to identify kindreds with increased aggregation of neurodegenerative and neuropsychiatric disease in the context of the recently described expanded hexanucleotide repeat in C9orf72. METHODS: A prospective, population-based, case-control family aggregation study was conducted. Family history information was collected through questionnaires and interviews from ALS patients and matched controls. Cause of death was verified with death certification. The recurrence rate of ALS and the risk in family members of other neurodegenerative and neuropsychiatric disease was calculated using the relative risk (lambda) and cumulative risk using Kaplan-Meier analysis. RESULTS: Medical histories from 9,684 first- and second-degree relatives of 172 ALS probands and 192 controls were obtained. Cause of death was verified in 2,494 cases. Sixteen percent (n=27) of ALS patients had a family history of ALS. The lifetime hazard ratio (HR) of developing ALS among first- and second-degree relatives was 34.3 (p<0.0001) in relatives of ALS patients with the C9orf72 repeat expansion, and 2.3 (p=0.019) in relatives of ALS patients without the expansion. The relatives of ALS patients also had an increased HR of developing a psychotic illness (HR=4.7, p=0.004, 95% confidence interval [CI]=1.6-12.3) and of suicide (HR=5.6, p<0.0001, 95% CI=2.4-12.9) INTERPRETATION: The true rate of familial ALS in Ireland is 16%. There is an overlap between ALS, FTD, and neuropsychiatric disease that is pronounced in kindreds with the C9orf72 repeat expansion, but is also present in kindreds of those without the C9orf72 expanded repeat.


Asunto(s)
Esclerosis Amiotrófica Lateral/epidemiología , Predisposición Genética a la Enfermedad , Enfermedades Neurodegenerativas/epidemiología , Adulto , Edad de Inicio , Anciano , Esclerosis Amiotrófica Lateral/genética , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Incidencia , Irlanda/epidemiología , Masculino , Persona de Mediana Edad , Enfermedades Neurodegenerativas/genética , Estudios Prospectivos , Sistema de Registros , Riesgo , Encuestas y Cuestionarios
9.
J Med Genet ; 50(11): 776-83, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23881933

RESUMEN

BACKGROUND: Over 100 genes have been implicated in the aetiology of amyotrophic lateral sclerosis (ALS). A detailed understanding of their independent and cumulative contributions to disease burden may help guide various clinical and research efforts. METHODS: Using targeted high-throughput sequencing, we characterised the variation of 10 Mendelian and 23 low penetrance/tentative ALS genes within a population-based cohort of 444 Irish ALS cases (50 fALS, 394 sALS) and 311 age-matched and geographically matched controls. RESULTS: Known or potential high-penetrance ALS variants were identified within 17.1% of patients (38% of fALS, 14.5% of sALS). 12.8% carried variants of Mendelian disease genes (C9orf72 8.78%; SETX 2.48%; ALS2 1.58%; FUS 0.45%; TARDBP 0.45%; OPTN 0.23%; VCP 0.23%. ANG, SOD1, VAPB 0%), 4.7% carried variants of low penetrance/tentative ALS genes and 9.7% (30% of fALS, 7.1% of sALS) carried previously described ALS variants (C9orf72 8.78%; FUS 0.45%; TARDBP 0.45%). 1.6% of patients carried multiple known/potential disease variants, including all identified carriers of an established ALS variant (p<0.01); TARDBP:c.859G>A(p.[G287S]) (n=2/2 sALS). Comparison of our results with those from studies of other European populations revealed significant differences in the spectrum of disease variation (p=1.7×10(-4)). CONCLUSIONS: Up to 17% of Irish ALS cases may carry high-penetrance variants within the investigated genes. However, the precise nature of genetic susceptibility differs significantly from that reported within other European populations. Certain variants may not cause disease in isolation and concomitant analysis of disease genes may prove highly important.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Análisis de Secuencia de ADN/métodos , Anciano , Estudios de Cohortes , Femenino , Marcadores Genéticos/genética , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Irlanda , Masculino , Persona de Mediana Edad , Penetrancia , Fenotipo
10.
Nat Genet ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858457

RESUMEN

Despite substantial progress, causal variants are identified only for a minority of familial Parkinson's disease (PD) cases, leaving high-risk pathogenic variants unidentified1,2. To identify such variants, we uniformly processed exome sequencing data of 2,184 index familial PD cases and 69,775 controls. Exome-wide analyses converged on RAB32 as a novel PD gene identifying c.213C > G/p.S71R as a high-risk variant presenting in ~0.7% of familial PD cases while observed in only 0.004% of controls (odds ratio of 65.5). This variant was confirmed in all cases via Sanger sequencing and segregated with PD in three families. RAB32 encodes a small GTPase known to interact with LRRK2 (refs. 3,4). Functional analyses showed that RAB32 S71R increases LRRK2 kinase activity, as indicated by increased autophosphorylation of LRRK2 S1292. Here our results implicate mutant RAB32 in a key pathological mechanism in PD-LRRK2 kinase activity5-7-and thus provide novel insights into the mechanistic connections between RAB family biology, LRRK2 and PD risk.

11.
Heliyon ; 10(3): e24975, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38317984

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving selective vulnerability of energy-intensive motor neurons (MNs). It has been unclear whether mitochondrial function is an upstream driver or a downstream modifier of neurotoxicity. We separated upstream genetic determinants of mitochondrial function, including genetic variation within the mitochondrial genome or autosomes; from downstream changeable factors including mitochondrial DNA copy number (mtCN). Across three cohorts including 6,437 ALS patients, we discovered that a set of mitochondrial haplotypes, chosen because they are linked to measurements of mitochondrial function, are a determinant of ALS survival following disease onset, but do not modify ALS risk. One particular haplotype appeared to be neuroprotective and was significantly over-represented in two cohorts of long-surviving ALS patients. Causal inference for mitochondrial function was achievable using mitochondrial haplotypes, but not autosomal SNPs in traditional Mendelian randomization (MR). Furthermore, rare loss-of-function genetic variants within, and reduced MN expression of, ACADM and DNA2 lead to ∼50 % shorter ALS survival; both proteins are implicated in mitochondrial function. Both mtCN and cellular vulnerability are linked to DNA2 function in ALS patient-derived neurons. Finally, MtCN responds dynamically to the onset of ALS independently of mitochondrial haplotype, and is correlated with disease severity. We conclude that, based on the genetic measures we have employed, mitochondrial function is a therapeutic target for amelioration of disease severity but not prevention of ALS.

12.
medRxiv ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633814

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease caused by the selective and progressive death of motor neurons (MNs). Understanding the genetic and molecular factors influencing ALS survival is crucial for disease management and therapeutics. In this study, we introduce a deep learning-powered genetic analysis framework to link rare noncoding genetic variants to ALS survival. Using data from human induced pluripotent stem cell (iPSC)-derived MNs, this method prioritizes functional noncoding variants using deep learning, links cis-regulatory elements (CREs) to target genes using epigenomics data, and integrates these data through gene-level burden tests to identify survival-modifying variants, CREs, and genes. We apply this approach to analyze 6,715 ALS genomes, and pinpoint four novel rare noncoding variants associated with survival, including chr7:76,009,472:C>T linked to CCDC146. CRISPR-Cas9 editing of this variant increases CCDC146 expression in iPSC-derived MNs and exacerbates ALS-specific phenotypes, including TDP-43 mislocalization. Suppressing CCDC146 with an antisense oligonucleotide (ASO), showing no toxicity, completely rescues ALS-associated survival defects in neurons derived from sporadic ALS patients and from carriers of the ALS-associated G4C2-repeat expansion within C9ORF72. ASO targeting of CCDC146 may be a broadly effective therapeutic approach for ALS. Our framework provides a generic and powerful approach for studying noncoding genetics of complex human diseases.

13.
Hum Mutat ; 34(6): 836-41, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23447461

RESUMEN

The potential pathogenicity of genetic variants identified in disease-based resequencing studies is often overlooked where variants have previously been reported in dbSNP, the 1000 genomes project, or the National Heart, Lung and Blood Institute Exome Sequencing Project (ESP). In this work, we estimate that collectively, these databases capture ∼52% of mutations (dbSNP 50.4%; 1000 genomes 4.8%; and ESP 10.2%) reported as disease causing within phenotype-based locus-specific databases (LSDBs). To investigate whether these mutations may simply represent benign population variants, we evaluated whether the carrier frequencies associated with mutations implicated in amyotrophic lateral sclerosis were higher than what could be accounted for by high-penetrance disease models. In doing so, we have questioned the veracity of 51 mutations, but also demonstrated that each of the three databases included credible disease variants. Our results demonstrate the benefits of using databases such as dbSNP, the 1000 genomes project, and the ESP to evaluate the pathogenicity of putative disease variants, and suggest that many disease mutations reported across LSDBs may not actually be pathogenic. However, they also demonstrate that even in the context of rare Mendelian disorders, the potential pathogenicity of variants reported by these databases should not be overlooked without proper evaluation.


Asunto(s)
Biología Computacional , Bases de Datos Genéticas , Estudios de Asociación Genética , Variación Genética , Mapeo Cromosómico , Biología Computacional/métodos , Genómica/métodos , Humanos , Modelos Genéticos , Mutación , Penetrancia
14.
Cell Syst ; 13(8): 598-614.e6, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35690068

RESUMEN

The determinants of severe COVID-19 in healthy adults are poorly understood, which limits the opportunity for early intervention. We present a multiomic analysis using machine learning to characterize the genomic basis of COVID-19 severity. We use single-cell multiome profiling of human lungs to link genetic signals to cell-type-specific functions. We discover >1,000 risk genes across 19 cell types, which account for 77% of the SNP-based heritability for severe disease. Genetic risk is particularly focused within natural killer (NK) cells and T cells, placing the dysfunction of these cells upstream of severe disease. Mendelian randomization and single-cell profiling of human NK cells support the role of NK cells and further localize genetic risk to CD56bright NK cells, which are key cytokine producers during the innate immune response. Rare variant analysis confirms the enrichment of severe-disease-associated genetic variation within NK-cell risk genes. Our study provides insights into the pathogenesis of severe COVID-19 with potential therapeutic targets.


Asunto(s)
COVID-19 , Adulto , Antígeno CD56/análisis , Antígeno CD56/metabolismo , COVID-19/genética , Citocinas/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Células Asesinas Naturales/química , Células Asesinas Naturales/metabolismo , Polimorfismo de Nucleótido Simple
15.
Brain Commun ; 4(2): fcac069, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35441136

RESUMEN

Amyotrophic lateral sclerosis is a rapidly progressive neurodegenerative disease that affects 1/350 individuals in the United Kingdom. The cause of amyotrophic lateral sclerosis is unknown in the majority of cases. Two-sample Mendelian randomization enables causal inference between an exposure, such as the serum concentration of a specific metabolite, and disease risk. We obtained genome-wide association study summary statistics for serum concentrations of 566 metabolites which were population matched with a genome-wide association study of amyotrophic lateral sclerosis. For each metabolite, we performed Mendelian randomization using an inverse variance weighted estimate for significance testing. After stringent Bonferroni multiple testing correction, our unbiased screen revealed three metabolites that were significantly linked to the risk of amyotrophic lateral sclerosis: Estrone-3-sulphate and bradykinin were protective, which is consistent with literature describing a male preponderance of amyotrophic lateral sclerosis and a preventive effect of angiotensin-converting enzyme inhibitors which inhibit the breakdown of bradykinin. Serum isoleucine was positively associated with amyotrophic lateral sclerosis risk. All three metabolites were supported by robust Mendelian randomization measures and sensitivity analyses; estrone-3-sulphate and isoleucine were confirmed in a validation amyotrophic lateral sclerosis genome-wide association study. Estrone-3-sulphate is metabolized to the more active estradiol by the enzyme 17ß-hydroxysteroid dehydrogenase 1; further, Mendelian randomization demonstrated a protective effect of estradiol and rare variant analysis showed that missense variants within HSD17B1, the gene encoding 17ß-hydroxysteroid dehydrogenase 1, modify risk for amyotrophic lateral sclerosis. Finally, in a zebrafish model of C9ORF72-amyotrophic lateral sclerosis, we present evidence that estradiol is neuroprotective. Isoleucine is metabolized via methylmalonyl-CoA mutase encoded by the gene MMUT in a reaction that consumes vitamin B12. Multivariable Mendelian randomization revealed that the toxic effect of isoleucine is dependent on the depletion of vitamin B12; consistent with this, rare variants which reduce the function of MMUT are protective against amyotrophic lateral sclerosis. We propose that amyotrophic lateral sclerosis patients and family members with high serum isoleucine levels should be offered supplementation with vitamin B12.

16.
Neuron ; 110(6): 992-1008.e11, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35045337

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a complex disease that leads to motor neuron death. Despite heritability estimates of 52%, genome-wide association studies (GWASs) have discovered relatively few loci. We developed a machine learning approach called RefMap, which integrates functional genomics with GWAS summary statistics for gene discovery. With transcriptomic and epigenetic profiling of motor neurons derived from induced pluripotent stem cells (iPSCs), RefMap identified 690 ALS-associated genes that represent a 5-fold increase in recovered heritability. Extensive conservation, transcriptome, network, and rare variant analyses demonstrated the functional significance of candidate genes in healthy and diseased motor neurons and brain tissues. Genetic convergence between common and rare variation highlighted KANK1 as a new ALS gene. Reproducing KANK1 patient mutations in human neurons led to neurotoxicity and demonstrated that TDP-43 mislocalization, a hallmark pathology of ALS, is downstream of axonal dysfunction. RefMap can be readily applied to other complex diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Proteínas Adaptadoras Transductoras de Señales/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Muerte Celular/genética , Proteínas del Citoesqueleto/genética , Estudio de Asociación del Genoma Completo , Humanos , Células Madre Pluripotentes Inducidas/patología , Neuronas Motoras/patología
17.
Nat Neurosci ; 25(4): 433-445, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35361972

RESUMEN

The noncoding genome is substantially larger than the protein-coding genome but has been largely unexplored by genetic association studies. Here, we performed region-based rare variant association analysis of >25,000 variants in untranslated regions of 6,139 amyotrophic lateral sclerosis (ALS) whole genomes and the whole genomes of 70,403 non-ALS controls. We identified interleukin-18 receptor accessory protein (IL18RAP) 3' untranslated region (3'UTR) variants as significantly enriched in non-ALS genomes and associated with a fivefold reduced risk of developing ALS, and this was replicated in an independent cohort. These variants in the IL18RAP 3'UTR reduce mRNA stability and the binding of double-stranded RNA (dsRNA)-binding proteins. Finally, the variants of the IL18RAP 3'UTR confer a survival advantage for motor neurons because they dampen neurotoxicity of human induced pluripotent stem cell (iPSC)-derived microglia bearing an ALS-associated expansion in C9orf72, and this depends on NF-κB signaling. This study reveals genetic variants that protect against ALS by reducing neuroinflammation and emphasizes the importance of noncoding genetic association studies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Subunidad beta del Receptor de Interleucina-18/genética , Regiones no Traducidas 3'/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Subunidad beta del Receptor de Interleucina-18/metabolismo , Neuronas Motoras/metabolismo
18.
NPJ Genom Med ; 7(1): 8, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35091648

RESUMEN

There is a strong genetic contribution to Amyotrophic lateral sclerosis (ALS) risk, with heritability estimates of up to 60%. Both Mendelian and small effect variants have been identified, but in common with other conditions, such variants only explain a little of the heritability. Genomic structural variation might account for some of this otherwise unexplained heritability. We therefore investigated association between structural variation in a set of 25 ALS genes, and ALS risk and phenotype. As expected, the repeat expansion in the C9orf72 gene was identified as associated with ALS. Two other ALS-associated structural variants were identified: inversion in the VCP gene and insertion in the ERBB4 gene. All three variants were associated both with increased risk of ALS and specific phenotypic patterns of disease expression. More than 70% of people with respiratory onset ALS harboured ERBB4 insertion compared with 25% of the general population, suggesting respiratory onset ALS may be a distinct genetic subtype.

19.
Front Cell Neurosci ; 16: 1050596, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589292

RESUMEN

Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of upper and lower motor neurons, leading to progressive weakness of voluntary muscles, with death following from neuromuscular respiratory failure, typically within 3 to 5 years. There is a strong genetic contribution to ALS risk. In 10% or more, a family history of ALS or frontotemporal dementia is obtained, and the Mendelian genes responsible for ALS in such families have now been identified in about 50% of cases. Only about 14% of apparently sporadic ALS is explained by known genetic variation, suggesting that other forms of genetic variation are important. Telomeres maintain DNA integrity during cellular replication, differ between sexes, and shorten naturally with age. Sex and age are risk factors for ALS and we therefore investigated telomere length in ALS. Methods: Samples were from Project MinE, an international ALS whole genome sequencing consortium that includes phenotype data. For validation we used donated brain samples from motor cortex from people with ALS and controls. Ancestry and relatedness were evaluated by principal components analysis and relationship matrices of DNA microarray data. Whole genome sequence data were from Illumina HiSeq platforms and aligned using the Isaac pipeline. TelSeq was used to quantify telomere length using whole genome sequence data. We tested the association of telomere length with ALS and ALS survival using Cox regression. Results: There were 6,580 whole genome sequences, reducing to 6,195 samples (4,315 from people with ALS and 1,880 controls) after quality control, and 159 brain samples (106 ALS, 53 controls). Accounting for age and sex, there was a 20% (95% CI 14%, 25%) increase of telomere length in people with ALS compared to controls (p = 1.1 × 10-12), validated in the brain samples (p = 0.03). Those with shorter telomeres had a 10% increase in median survival (p = 5.0×10-7). Although there was no difference in telomere length between sporadic ALS and familial ALS (p=0.64), telomere length in 334 people with ALS due to expanded C9orf72 repeats was shorter than in those without expanded C9orf72 repeats (p = 5.0×10-4). Discussion: Although telomeres shorten with age, longer telomeres are a risk factor for ALS and worsen prognosis. Longer telomeres are associated with ALS.

20.
J Neurol Neurosurg Psychiatry ; 82(6): 623-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21047878

RESUMEN

BACKGROUND: The population rate of familial amyotrophic lateral sclerosis (FALS) is frequently reported as 10%. However, a systematic review and meta-analysis of the true population based frequency of FALS has never been performed. METHOD: A Medline literature review identified all original articles reporting a rate of FALS. Studies were grouped according to the type of data presented and examined for sources of case ascertainment. A systematic review and meta-analysis of reported rates of FALS was then conducted to facilitate comparison between studies and calculate a pooled rate of FALS. RESULTS: 38 papers reported a rate of FALS. Thirty-three papers were included in analysis and the rate of FALS for all studies was 4.6% (95% CI 3.9% to 5.5%). Restricting the analysis to prospective population based registry data revealed a rate of 5.1% (95% CI 4.1% to 6.1%). The incidence of FALS was lower in southern Europe. There was no correlation between rate of FALS and reported SOD1 mutation rates. CONCLUSION: The rate of FALS among prospective population based registries is 5.1% (CI 4.1 to 6.1%), and not 10% as is often stated. Further detailed prospective population based studies of familial ALS are required to confirm this rate.


Asunto(s)
Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/genética , Humanos , Mutación , Superóxido Dismutasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA