Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Glia ; 70(11): 2157-2168, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35809029

RESUMEN

Microglia, the resident macrophages of the central nervous system, are highly motile cells that support brain development, provision neuronal signaling, and protect brain cells against damage. Proper microglial functioning requires constant cell movement and morphological changes. Interestingly, the transient receptor potential vanilloid 4 (TRPV4) channel, a calcium-permeable channel, is involved in hypoosmotic morphological changes of retinal microglia and regulates temperature-dependent movement of microglial cells both in vitro and in vivo. Despite the broad functions of TRPV4 and the recent findings stating a role for TRPV4 in microglial movement, little is known about how TRPV4 modulates cytoskeletal remodeling to promote changes of microglial motility. Here we show that acute inhibition of TRPV4, but not its constitutive absence in the Trpv4 KO cells, affects the morphology and motility of microglia in vitro. Using high-end confocal imaging techniques, we show a decrease in actin-rich filopodia and tubulin dynamics upon acute inhibition of TRPV4 in vitro. Furthermore, using acute brain slices we demonstrate that Trpv4 knockout microglia display lower ramification complexity, slower process extension speed and consequently smaller surveyed area. We conclude that TRPV4 inhibition triggers a shift in cytoskeleton remodeling of microglia influencing their migration and morphology.


Asunto(s)
Canales Catiónicos TRPV , Canales de Potencial de Receptor Transitorio , Cationes , Citoesqueleto , Microglía/fisiología , Canales Catiónicos TRPV/genética
2.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142366

RESUMEN

p27kip1 is a multifunctional protein that promotes cell cycle exit by blocking the activity of cyclin/cyclin-dependent kinase complexes as well as migration and motility via signaling pathways that converge on the actin and microtubule cytoskeleton. Despite the broad characterization of p27kip1 function in neural cells, little is known about its relevance in microglia. Here, we studied the role of p27kip1 in microglia using a combination of in vitro and in situ approaches. While the loss of p27kip1 did not affect microglial density in the cerebral cortex, it altered their morphological complexity in situ. However, despite the presence of p27kip1 in microglial processes, as shown by immunofluorescence in cultured cells, loss of p27kip1 did not change microglial process motility and extension after applying laser-induced brain damage in cortical brain slices. Primary microglia lacking p27kip1 showed increased phagocytic uptake of synaptosomes, while a cell cycle dead variant negatively affected phagocytosis. These findings indicate that p27kip1 plays specific roles in microglia.


Asunto(s)
Proteínas de Ciclo Celular , Microglía , Actinas , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Microglía/metabolismo
3.
Acta Neuropathol ; 137(4): 599-617, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30721409

RESUMEN

Brains of Alzheimer's disease patients are characterized by the presence of amyloid plaques and neurofibrillary tangles, both invariably associated with neuroinflammation. A crucial role for NLRP3-ASC inflammasome [NACHT, LRR and PYD domains-containing protein 3 (NLRP3)-Apoptosis-associated speck-like protein containing a CARD (ASC)] in amyloid-beta (Aß)-induced microgliosis and Aß pathology has been unequivocally identified. Aß aggregates activate NLRP3-ASC inflammasome (Halle et al. in Nat Immunol 9:857-865, 2008) and conversely NLRP3-ASC inflammasome activation exacerbates amyloid pathology in vivo (Heneka et al. in Nature 493:674-678, 2013), including by prion-like ASC-speck cross-seeding (Venegas et al. in Nature 552:355-361, 2017). However, the link between inflammasome activation, as crucial sensor of innate immunity, and Tau remains unexplored. Here, we analyzed whether Tau aggregates acting as prion-like Tau seeds can activate NLRP3-ASC inflammasome. We demonstrate that Tau seeds activate NLRP3-ASC-dependent inflammasome in primary microglia, following microglial uptake and lysosomal sorting of Tau seeds. Next, we analyzed the role of inflammasome activation in prion-like or templated seeding of Tau pathology and found significant inhibition of exogenously seeded Tau pathology by ASC deficiency in Tau transgenic mice. We furthermore demonstrate that chronic intracerebral administration of the NLRP3 inhibitor, MCC950, inhibits exogenously seeded Tau pathology. Finally, ASC deficiency also decreased non-exogenously seeded Tau pathology in Tau transgenic mice. Overall our findings demonstrate that Tau-seeding competent, aggregated Tau activates the ASC inflammasome through the NLRP3-ASC axis, and we demonstrate an exacerbating role of the NLRP3-ASC axis on exogenously and non-exogenously seeded Tau pathology in Tau mice in vivo. The NLRP3-ASC inflammasome, which is an important sensor of innate immunity and intensively explored for its role in health and disease, hence presents as an interesting therapeutic approach to target three crucial pathogenetic processes in AD, including prion-like seeding of Tau pathology, Aß pathology and neuroinflammation.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Agregado de Proteínas/fisiología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Gliosis/genética , Gliosis/metabolismo , Gliosis/patología , Interleucina-1beta/metabolismo , Ratones , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Proteínas tau/genética
4.
Glia ; 65(7): 1072-1088, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28417486

RESUMEN

Microglia, the immune cells of the central nervous system, take part in brain development and homeostasis. They derive from primitive myeloid progenitors that originate in the yolk sac and colonize the brain mainly through intensive migration. During development, microglial migration speed declines which suggests that their interaction with the microenvironment changes. However, the matrix-cell interactions allowing dispersion within the parenchyma are unknown. Therefore, we aimed to better characterize the migration behavior and to assess the role of matrix-integrin interactions during microglial migration in the embryonic brain ex vivo. We focused on microglia-fibronectin interactions mediated through the fibronectin receptor α5ß1 integrin because in vitro work indirectly suggested a role for this ligand-receptor pair. Using 2-photon time-lapse microscopy on acute ex vivo embryonic brain slices, we found that migration occurs in a saltatory pattern and is developmentally regulated. Most importantly, there is an age-specific function of the α5ß1 integrin during microglial cortex colonization. At embryonic day (E) 13.5, α5ß1 facilitates migration while from E15.5, it inhibits migration. These results indicate a developmentally regulated function of α5ß1 integrin in microglial migration during colonization of the embryonic brain.


Asunto(s)
Envejecimiento , Movimiento Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Integrina alfa5beta1/metabolismo , Microglía/fisiología , Animales , Vasos Sanguíneos/fisiología , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Embrión de Mamíferos , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lectinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ficoeritrina/metabolismo , Transducción de Señal/fisiología
5.
Cells ; 13(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38920631

RESUMEN

Microglia activity can drive excessive synaptic loss during the prodromal phase of Alzheimer's disease (AD) and is associated with lowered cyclic adenosine monophosphate (cAMP) due to cAMP phosphodiesterase 4B (PDE4B). This study aimed to investigate whether long-term inhibition of PDE4B by A33 (3 mg/kg/day) can prevent synapse loss and its associated cognitive decline in APPswe/PS1dE9 mice. This model is characterized by a chimeric mouse/human APP with the Swedish mutation and human PSEN1 lacking exon 9 (dE9), both under the control of the mouse prion protein promoter. The effects on cognitive function of prolonged A33 treatment from 20 days to 4 months of age, was assessed at 7-8 months. PDE4B inhibition significantly improved both the working and spatial memory of APPswe/PSdE9 mice after treatment ended. At the cellular level, in vitro inhibition of PDE4B induced microglial filopodia formation, suggesting that regulation of PDE4B activity can counteract microglia activation. Further research is needed to investigate if this could prevent microglia from adopting their 'disease-associated microglia (DAM)' phenotype in vivo. These findings support the possibility that PDE4B is a potential target in combating AD pathology and that early intervention using A33 may be a promising treatment strategy for AD.


Asunto(s)
Enfermedad de Alzheimer , Cognición , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Modelos Animales de Enfermedad , Ratones Transgénicos , Microglía , Inhibidores de Fosfodiesterasa 4 , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Cognición/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Inhibidores de Fosfodiesterasa 4/administración & dosificación , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Presenilina-1/genética , Presenilina-1/metabolismo , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Masculino
6.
Theranostics ; 11(5): 2080-2097, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33500712

RESUMEN

Synapses are the functional units of the brain. They form specific contact points that drive neuronal communication and are highly plastic in their strength, density, and shape. A carefully orchestrated balance between synaptogenesis and synaptic pruning, i.e., the elimination of weak or redundant synapses, ensures adequate synaptic density. An imbalance between these two processes lies at the basis of multiple neuropathologies. Recent evidence has highlighted the importance of glia-neuron interactions in the synaptic unit, emphasized by glial phagocytosis of synapses and local excretion of inflammatory mediators. These findings warrant a closer look into the molecular basis of cell-signaling pathways in the different brain cells that are related to synaptic plasticity. In neurons, intracellular second messengers, such as cyclic guanosine or adenosine monophosphate (cGMP and cAMP, respectively), are known mediators of synaptic homeostasis and plasticity. Increased levels of these second messengers in glial cells slow down inflammation and neurodegenerative processes. These multi-faceted effects provide the opportunity to counteract excessive synapse loss by targeting cGMP and cAMP pathways in multiple cell types. Phosphodiesterases (PDEs) are specialized degraders of these second messengers, rendering them attractive targets to combat the detrimental effects of neurological disorders. Cellular and subcellular compartmentalization of the specific isoforms of PDEs leads to divergent downstream effects for these enzymes in the various central nervous system resident cell types. This review provides a detailed overview on the role of PDEs and their inhibition in the context of glia-neuron interactions in different neuropathologies characterized by synapse loss. In doing so, it provides a framework to support future research towards finding combinational therapy for specific neuropathologies.


Asunto(s)
Neuroglía/efectos de los fármacos , Plasticidad Neuronal , Neuronas/efectos de los fármacos , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/química , Animales , Humanos , Neuroglía/enzimología , Neuronas/enzimología , Transducción de Señal
7.
J Extracell Vesicles ; 10(1): e12022, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33708355

RESUMEN

Microglia, the immunocompetent cells of the central nervous system (CNS), play an important role in maintaining cellular homeostasis in the CNS. These cells secrete immunomodulatory factors including nanovesicles and participate in the removal of cellular debris by phagocytosis or autophagy. Accumulating evidence indicates that specifically the cellular exchange of small extracellular vesicles (EVs), participates in physiology and disease through intercellular communication. However, the contribution of microglial-derived extracellular vesicles (M-EVs) to the maintenance of microglia homeostasis and how M-EVs could influence the phenotype and gene function of other microglia subtypes is unclear. In addition, knowledge of canonical signalling pathways of inflammation and immunity gene expression patterns in human microglia exposed to M-EVs is limited. Here, we analysed the effects of M-EVs produced in vitro by either tumour necrosis factor alpha (TNFα) activated or non-activated microglia BV2 cells. We showed that M-EVs are internalized by both mouse and human C20 microglia cells and that the uptake of M-EVs in microglia induced autophagic vesicles at various stages of degradation including autophagosomes and autolysosomes. Consistently, stimulation of microglia with M-EVs increased the protein expression of the autophagy marker, microtubule-associated proteins 1A/1B light chain 3B isoform II (LC3B-II), and promoted autophagic flux in live cells. To elucidate the biological activities occurring at the transcriptional level in C20 microglia stimulated with M-EVs, the gene expression profiles, potential upstream regulators, and enrichment pathways were characterized using targeted RNA sequencing. Inflammation and immunity transcriptome gene panel sequencing of both activated and normal microglia stimulated with M-EVs showed involvement of several canonical pathways and reduced expression of key genes involved in neuroinflammation, inflammasome and apoptosis signalling pathways compared to control cells. In this study, we provide the perspective that a beneficial activity of in vitro cell culture produced EVs could be the modulation of autophagy during cellular stress. Therefore, we use a monoculture system to study microglia-microglia crosstalk which is important in the prevention and propagation of inflammation in the brain. We demonstrate that in vitro produced microglial EVs are able to influence multiple biological pathways and promote activation of autophagy in order to maintain microglia survival and homeostasis.


Asunto(s)
Autofagia , Vesículas Extracelulares/metabolismo , Microglía/metabolismo , Transducción de Señal , Animales , Línea Celular , Regulación de la Expresión Génica , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/biosíntesis
8.
Prog Neurobiol ; 178: 101612, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30954517

RESUMEN

In the last decade, tremendous progress has been made in understanding the biology of microglia - i.e. the fascinating immigrated resident immune cell population of the central nervous system (CNS). Recent literature reviews have largely dealt with the plentiful functions of microglia in CNS homeostasis, development and pathology, and the influences of sex and the microbiome. In this review, the intriguing aspect of their physical plasticity during CNS development will get specific attention. Microglia move around (mobility) and reshape their processes (motility). Microglial migration into and inside the CNS is most prominent throughout development and consequently most of the data described in this review concern mobility and motility in the changing environment of the developing brain. Here, we first define microglia based on their highly specialized age- and region-dependent gene expression signature and associated functional heterogeneity. Next, we describe their origin, the migration route of immature microglial cells towards the CNS, the mechanisms underlying their invasion of the CNS, and their spatiotemporal localization and surveying behaviour inside the developing CNS. These processes are dependent on microglial mobility and motility which are determined by the microenvironment of the CNS. Therefore, we further zoom in on the changing environment during CNS development. We elaborate on the extracellular matrix and the respective integrin receptors on microglia and we discuss the purinergic and molecular signalling in microglial mobility. In the last section, we discuss the physiological and pathological functions of microglia in which mobility and motility are involved to stress the importance of microglial 'movement'.


Asunto(s)
Movimiento Celular/fisiología , Sistema Nervioso Central/crecimiento & desarrollo , Microglía/fisiología , Fagocitosis/fisiología , Transducción de Señal/fisiología , Animales , Humanos
9.
J Neurosci Methods ; 293: 169-173, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28970164

RESUMEN

BACKGROUND: Microglia, the resident phagocytic cells of the brain, have recently been the subject of intense investigation given their role in pathology and normal brain physiology. In general, phagocytic cells are hard to transfect with plasmid DNA. The BV2 cell line is a murine cell line of microglial origin which is often used to study this cell type in vitro. Unfortunately, this microglial cell line is, like other phagocytic cells, resistant to transfection. NEW METHOD: Magnetofection is a well-established transfection method that combines DNA with magnetic particles which, under the influence of a magnetic field, ensures a high concentration of particles in proximity of cultured cells. Only recently, Glial-Mag was specifically developed for efficient transfection of microglia and microglial cell lines. RESULTS: Magnetofection with Glial-Mag yielded a transfection efficiency of 34.95% in BV2 cells, 24h after transfection with an eGFP-expressing plasmid. Efficient gene delivery caused a modest and short-lived cell activation (as measured by IL6 secretion) that ceased by 24h after transfection. COMPARISON WITH EXISTING METHODS: Here we show that Glial-Mag magnetofection of BV2 cells yielded a significantly higher transfection efficiency (34.95%) compared to other chemical transfection methods including calcium-phoshate precipication (0.34%), X-tremeGENE (3.30%) and Lipofectamine 2000 (12.51%). CONCLUSION: Transfection of BV2 cells using Glial-Mag magnetofection is superior compared to other chemical transfection methods and could be considered as the method of choice to chemically transfect microglial cell lines.


Asunto(s)
Línea Celular , Microglía , Transfección/métodos , Animales , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Interleucina-6/genética , Interleucina-6/metabolismo , Campos Magnéticos , Nanopartículas de Magnetita/administración & dosificación , Ratones , Microglía/citología , Microglía/metabolismo , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA