Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell ; 80(1): 102-113.e6, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32853547

RESUMEN

Repair of covalent DNA-protein crosslinks (DPCs) by DNA-dependent proteases has emerged as an essential genome maintenance mechanism required for cellular viability and tumor suppression. However, how proteolysis is restricted to the crosslinked protein while leaving surrounding chromatin proteins unharmed has remained unknown. Using defined DPC model substrates, we show that the DPC protease SPRTN displays strict DNA structure-specific activity. Strikingly, SPRTN cleaves DPCs at or in direct proximity to disruptions within double-stranded DNA. In contrast, proteins crosslinked to intact double- or single-stranded DNA are not cleaved by SPRTN. NMR spectroscopy data suggest that specificity is not merely affinity-driven but achieved through a flexible bipartite strategy based on two DNA binding interfaces recognizing distinct structural features. This couples DNA context to activation of the enzyme, tightly confining SPRTN's action to biologically relevant scenarios.


Asunto(s)
Reactivos de Enlaces Cruzados/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/química , Línea Celular , Proteínas de Unión al ADN/química , Humanos , Espectroscopía de Resonancia Magnética , Modelos Biológicos , Dominios Proteicos , Relación Estructura-Actividad
2.
Nucleic Acids Res ; 49(2): 902-915, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33348378

RESUMEN

Repair of covalent DNA-protein crosslinks (DPCs) by the metalloprotease SPRTN prevents genome instability, premature aging and carcinogenesis. SPRTN is specifically activated by DNA structures containing single- and double-stranded features, but degrades the protein components of DPCs promiscuously and independent of amino acid sequence. This lack of specificity is useful to target diverse protein adducts, however, it requires tight control in return, in order to prohibit uncontrolled proteolysis of chromatin proteins. Here, we discover the components and principles of a ubiquitin switch, which negatively regulates SPRTN. We demonstrate that monoubiquitylation is induced in an E3 ligase-independent manner and, in contrast to previous assumptions, does not control chromatin access of the enzyme. Data obtained in cells and in vitro reveal that monoubiquitylation induces inactivation of the enzyme by triggering autocatalytic cleavage in trans while also priming SPRTN for proteasomal degradation in cis. Finally, we show that the deubiquitylating enzyme USP7 antagonizes this negative control of SPRTN in the presence of DPCs.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina/fisiología , Ubiquitinación , Catálisis , Línea Celular , Cromatina/metabolismo , Aductos de ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/química , Enzimas Desubicuitinizantes/metabolismo , Técnicas de Inactivación de Genes , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Peptidasa Específica de Ubiquitina 7/fisiología
3.
Nucleic Acids Res ; 42(16): 10503-15, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25120264

RESUMEN

Transcription elongation is a highly dynamic and discontinuous process, which includes frequent pausing of RNA polymerase II (RNAPII). RNAPII complexes that stall persistently on a gene during transcription elongation block transcription and thus have to be removed. It has been proposed that the cellular pathway for removal of these DNA damage-independently stalled RNAPII complexes is similar or identical to the removal of RNAPII complexes stalled due to DNA damage. Here, we show that-consistent with previous data-DNA damage-independent stalling causes polyubiquitylation and proteasome-mediated degradation of Rpb1, the largest subunit of RNAPII, using Saccharomyces cerevisiae as model system. Moreover, recruitment of the proteasome to RNAPII and transcribed genes is increased when transcription elongation is impaired indicating that Rpb1 degradation takes place at the gene. Importantly, in contrast to the DNA damage-dependent pathway Rpb1 degradation of DNA damage-independently stalled RNAPII is independent of the E3 ligase Elc1. In addition, deubiquitylation of RNAPII is also independent of the Elc1-antagonizing deubiquitylase Ubp3. Thus, the pathway for degradation of DNA damage-independently stalled RNAPII is overlapping yet distinct from the previously described pathway for degradation of RNAPII stalled due to DNA damage. Taken together, we provide the first evidence that the cell discriminates between DNA damage-dependently and -independently stalled RNAPII.


Asunto(s)
Daño del ADN , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción/fisiología , Elonguina , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Ubiquitinación
4.
PLoS Genet ; 9(11): e1003914, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24244187

RESUMEN

Messenger RNA (mRNA) synthesis and export are tightly linked, but the molecular mechanisms of this coupling are largely unknown. In Saccharomyces cerevisiae, the conserved TREX complex couples transcription to mRNA export and mediates mRNP formation. Here, we show that TREX is recruited to the transcription machinery by direct interaction of its subcomplex THO with the serine 2-serine 5 (S2/S5) diphosphorylated CTD of RNA polymerase II. S2 and/or tyrosine 1 (Y1) phosphorylation of the CTD is required for TREX occupancy in vivo, establishing a second interaction platform necessary for TREX recruitment in addition to RNA. Genome-wide analyses show that the occupancy of THO and the TREX components Sub2 and Yra1 increases from the 5' to the 3' end of the gene in accordance with the CTD S2 phosphorylation pattern. Importantly, in a mutant strain, in which TREX is recruited to genes but does not increase towards the 3' end, the expression of long transcripts is specifically impaired. Thus, we show for the first time that a 5'-3' increase of a protein complex is essential for correct expression of the genome. In summary, we provide insight into how the phospho-code of the CTD directs mRNP formation and export through TREX recruitment.


Asunto(s)
Adenosina Trifosfatasas/genética , Complejos Multiproteicos , Proteínas Nucleares/genética , ARN Polimerasa II/genética , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/metabolismo , Fosforilación , ARN Mensajero/biosíntesis , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae , Serina/genética , Factores de Transcripción/genética , Transcripción Genética , Tirosina/genética
5.
RNA ; 16(7): 1393-401, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20494970

RESUMEN

Diverse steps in gene expression are tightly coupled. Curiously, the La-motif-containing protein Sro9 has been shown to play a role in transcription and translation. Here, we show that Sro9 interacts with nuclear and cytoplasmic protein complexes involved in gene expression. In addition, Sro9 shuttles between nucleus and cytoplasm and is exported from the nucleus in an mRNA export-dependent manner. Importantly, Sro9 is recruited to transcribed genes. However, whole genome expression analysis shows that loss of Sro9 function does not greatly change the level of specific transcripts indicating that Sro9 does not markedly affect their synthesis and/or stability. Taken together, Sro9 might bind to the mRNP already during transcription and accompany the mature mRNP to the cytoplasm where it modulates translation of the mRNA.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/citología
6.
G3 (Bethesda) ; 6(8): 2467-78, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27280787

RESUMEN

Traditional loss-of-function studies in Drosophila suffer from a number of shortcomings, including off-target effects in the case of RNA interference (RNAi) or the stochastic nature of mosaic clonal analysis. Here, we describe minimal in vivo GFP interference (miGFPi) as a versatile strategy to characterize gene function and to conduct highly stringent, cell type-specific loss-of-function experiments in Drosophila miGFPi combines CRISPR/Cas9-mediated tagging of genes at their endogenous locus with an immunotag and an exogenous 21 nucleotide RNAi effector sequence with the use of a single reagent, highly validated RNAi line targeting this sequence. We demonstrate the utility and time effectiveness of this method by characterizing the function of the Polymerase I (Pol I)-associated transcription factor Tif-1a, and the previously uncharacterized gene MESR4, in the Drosophila female germline stem cell lineage. In addition, we show that miGFPi serves as a powerful technique to functionally characterize individual isoforms of a gene. We exemplify this aspect of miGFPi by studying isoform-specific loss-of-function phenotypes of the longitudinals lacking (lola) gene in neural stem cells. Altogether, the miGFPi strategy constitutes a generalized loss-of-function approach that is amenable to the study of the function of all genes in the genome in a stringent and highly time effective manner.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas de Drosophila/genética , Drosophila/genética , Interferencia de ARN , Proteínas Represoras/genética , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Células Germinativas , Proteínas Fluorescentes Verdes/genética , Mutación , Isoformas de Proteínas/genética , ARN Guía de Kinetoplastida , Proteínas Represoras/metabolismo , Células Madre
7.
J Biol Chem ; 281(48): 36518-25, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17030511

RESUMEN

The conserved TREX complex couples transcription to nuclear mRNA export. Here, we report that the uncharacterized open reading frame YOR166c genetically interacts with TREX complex components and encodes a novel protein named Swt1 for "synthetically lethal with TREX." Co-immunoprecipitation experiments show that Swt1 also interacts with the TREX complex biochemically. Consistent with a potential role in transcription as suggested by its interaction with TREX, Swt1 localizes mainly to the nucleus. Importantly, deletion of Swt1 leads to decreased transcription. Taken together, these data suggest that Swt1 functions in gene expression in conjunction with the TREX complex.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Transcripción Genética , Secuencia de Aminoácidos , Endorribonucleasas , Eliminación de Gen , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Fracciones Subcelulares , Temperatura , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA