Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Phys Rev Lett ; 126(8): 085002, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33709740

RESUMEN

We demonstrate magnetic confinement of an ultracold neutral plasma (UCNP) created at the null of a biconic cusp, or quadrupole magnetic field. Initially, the UCNP expands due to electron thermal pressure. As the plasma encounters stronger fields, expansion slows and the density distribution molds to the field. UCNP electrons are strongly magnetized over most of the plasma, while ion magnetization is only significant at the boundaries. Observations suggest that electrons and ions are predominantly trapped by magnetic mirroring and ambipolar electric fields, respectively. Confinement times approach 0.5 ms, while unmagnetized plasmas dissipate on a timescale of a few tens of microseconds.

2.
Phys Rev Lett ; 120(8): 083401, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-29543028

RESUMEN

We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macroscopic occupation of bound molecular states that arise from scattering of the weakly bound Rydberg electron from ground-state atoms. The absence of a p-wave resonance in the low-energy electron-atom scattering in Sr introduces a universal behavior in the Rydberg spectral line shape and in scaling of the spectral width (narrowing) with the Rydberg principal quantum number, n. Spectral features are described with a functional determinant approach (FDA) that solves an extended Fröhlich Hamiltonian for a mobile impurity in a Bose gas. Excited states of polyatomic Rydberg molecules (trimers, tetrameters, and pentamers) are experimentally resolved and accurately reproduced with a FDA.

3.
Phys Rev Lett ; 116(24): 243001, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27367387

RESUMEN

We develop an approach to generate finite-range atomic interactions via optical Rydberg-state excitation and study the underlying excitation dynamics in theory and experiment. In contrast to previous work, the proposed scheme is based on resonant optical driving and the establishment of a dark state under conditions of electromagnetically induced transparency (EIT). Analyzing the driven dissipative dynamics of the atomic gas, we show that the interplay between coherent light coupling, radiative decay, and strong Rydberg-Rydberg atom interactions leads to the emergence of sizable effective interactions while providing remarkably long coherence times. The latter are studied experimentally in a cold gas of strontium atoms for which the proposed scheme is most efficient. Our measured atom loss is in agreement with the theoretical prediction based on binary effective interactions between the driven atoms.

4.
Phys Rev Lett ; 110(25): 253003, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23829735

RESUMEN

We propose and analyze a new scheme to produce ultracold neutral plasmas deep in the strongly coupled regime. The method exploits the interaction blockade between cold atoms excited to high-lying Rydberg states and therefore does not require substantial extensions of current ultracold plasma experiments. Extensive simulations reveal a universal behavior of the resulting Coulomb coupling parameter, providing a direct connection between the physics of strongly correlated Rydberg gases and ultracold plasmas. The approach is shown to reduce currently accessible temperatures by more than an order of magnitude, which opens up a new regime for ultracold plasma research and cold ion-beam applications with readily available experimental techniques.

5.
Phys Rev Lett ; 110(12): 123201, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-25166803

RESUMEN

We demonstrate control of the collapse and expansion of an (88)Sr Bose-Einstein condensate using an optical Feshbach resonance near the (1)S(0)-(3)P(1) intercombination transition at 689 nm. Significant changes in dynamics are caused by modifications of scattering length by up to ± 10a(bg), where the background scattering length of (88)Sr is a(bg) = -2a(0) (1a(0) = 0.053 nm). Changes in scattering length are monitored through changes in the size of the condensate after a time-of-flight measurement. Because the background scattering length is close to zero, blue detuning of the optical Feshbach resonance laser with respect to a photoassociative resonance leads to increased interaction energy and a faster condensate expansion, whereas red detuning triggers a collapse of the condensate. The results are modeled with the time-dependent nonlinear Gross-Pitaevskii equation.

6.
Phys Rev Lett ; 111(15): 150402, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24160581

RESUMEN

We demonstrate coherent one-color photoassociation of a Bose-Einstein condensate, which results in Rabi oscillations between atomic and molecular condensates. We attain atom-molecule Rabi frequencies that are comparable to decoherence rates by driving photoassociation of atoms in an ^{88}Sr condensate to a weakly bound level of the metastable 1S0+3P1 molecular potential, which has a long lifetime and a large Franck-Condon overlap integral with the ground scattering state. Transient shifts and broadenings of the excitation spectrum are clearly seen at short times, and they create an asymmetric excitation profile that only displays Rabi oscillations for blue detuning from resonance.

7.
Phys Rev Lett ; 109(18): 185008, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23215292

RESUMEN

Collisional relaxation of Coulomb systems is studied in the strongly coupled regime. We use an optical pump-probe approach to manipulate and monitor the dynamics of ions in an ultracold neutral plasma, which allows direct measurement of relaxation rates in a regime where common Landau-Spitzer theory breaks down. Numerical simulations confirm the experimental results and display non-Markovian dynamics at early times.

8.
Nat Commun ; 13(1): 972, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35190541

RESUMEN

A discrete degree of freedom can be engineered to match the Hamiltonian of particles moving in a real-space lattice potential. Such synthetic dimensions are powerful tools for quantum simulation because of the control they offer and the ability to create configurations difficult to access in real space. Here, in an ultracold 84Sr atom, we demonstrate a synthetic-dimension based on Rydberg levels coupled with millimeter waves. Tunneling amplitudes between synthetic lattice sites and on-site potentials are set by the millimeter-wave amplitudes and detunings respectively. Alternating weak and strong tunneling in a one-dimensional configuration realizes the single-particle Su-Schrieffer-Heeger (SSH) Hamiltonian, a paradigmatic model of topological matter. Band structure is probed through optical excitation from the ground state to Rydberg levels, revealing symmetry-protected topological edge states at zero energy. Edge-state energies are robust to perturbations of tunneling-rates that preserve chiral symmetry, but can be shifted by the introduction of on-site potentials.

9.
Phys Biol ; 8(5): 056008, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21896973

RESUMEN

The application of forces to cell membranes is a powerful method for studying membrane mechanics. To apply controlled dynamic forces on the piconewton scale, we designed and characterized a microfabricated magnetic force transducer (MMFT) consisting of current-carrying gold wires patterned on a sapphire substrate. The experimentally measured forces applied to paramagnetic and ferromagnetic beads as a function of applied current agree well with theoretical models. We used this device to pull tethers from microaspirated giant unilamellar vesicles and measure the threshold force for tether formation. In addition, the interlayer drag coefficient of the membrane was determined from the tether-return velocity under magnetic force-free conditions. At high levels of current, vesicles expanded as a result of local temperature changes. A finite element thermal model of the MMFT provided absolute temperature calibration, allowing determination of the thermal expansivity coefficient of stearoyl-oleoyl-phosphatidycholine vesicles (1.7 ± 0.4 × 10(-3) K(-1)) and characterization of the Joule heating associated with current passing through the device. This effect can be used as a sensitive probe of temperature changes on the microscale. These studies establish the MMFT as an effective tool for applying precise forces to membranes at controlled rates and quantitatively studying membrane mechanical and thermo-mechanical properties.


Asunto(s)
Membrana Celular/fisiología , Micromanipulación/métodos , Fenómenos Biomecánicos , Campos Magnéticos , Micromanipulación/instrumentación , Modelos Biológicos , Temperatura
10.
Phys Rev Lett ; 105(6): 065004, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20867986

RESUMEN

We photoionize laser-cooled atoms with a laser beam possessing spatially periodic intensity modulations to create ultracold neutral plasmas with controlled density perturbations. Laser-induced fluorescence imaging reveals that the density perturbations oscillate in space and time, and the dispersion relation of the oscillations matches that of ion acoustic waves, which are long-wavelength, electrostatic, density waves.

11.
Phys Rev Lett ; 105(3): 030402, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20867747

RESUMEN

We report quantum degeneracy in a gas of ultracold fermionic (87)Sr atoms. By evaporatively cooling a mixture of spin states in an optical dipole trap for 10.5 s, we obtain samples well into the degenerate regime with T/T(F)=0.26(-0.06)(+0.05). The main signature of degeneracy is a change in the momentum distribution as measured by time-of-flight imaging, and we also observe a decrease in evaporation efficiency below T/T(F) ∼0.5.

12.
Phys Rev Lett ; 103(20): 200402, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-20365965

RESUMEN

We report Bose-Einstein condensation of (84)Sr in an optical dipole trap. Efficient laser cooling on the narrow intercombination line and an ideal s-wave scattering length allow the creation of large condensates (N(0) approximately 3 x 10(5)) even though the natural abundance of this isotope is only 0.6%. Condensation is heralded by the emergence of a low-velocity component in time-of-flight images.

14.
Phys Rev E ; 93(2): 023201, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26986426

RESUMEN

The Yukawa one-component plasma (OCP) model is a paradigm for describing plasmas that contain one component of interest and one or more other components that can be treated as a neutralizing, screening background. In appropriately scaled units, interactions are characterized entirely by a screening parameter, κ. As a result, systems of similar κ show the same dynamics, regardless of the underlying parameters (e.g., density and temperature). We demonstrate this behavior using ultracold neutral plasmas (UNPs) created by photoionizing a cold (T≤10 mK) gas. The ions in UNP systems are well described by the Yukawa model, with the electrons providing the screening. Creation of the plasma through photoionization can be thought of as a rapid quench of the interaction potential from κ=∞ to a final κ value set by the electron density and temperature. We demonstrate experimentally that the postquench dynamics are universal in κ over a factor of 30 in density and an order of magnitude in temperature. Results are compared with molecular-dynamics simulations. We also demonstrate that features of the postquench kinetic energy evolution, such as disorder-induced heating and kinetic-energy oscillations, can be used to determine the plasma density and the electron temperature.


Asunto(s)
Gases em Plasma/química , Electrones , Calor , Cinética , Simulación de Dinámica Molecular
15.
Acta Biomater ; 10(1): 173-82, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24036238

RESUMEN

The aortic valve consists of valvular interstitial cells (VICs) and endothelial cells (VECs). While these cells are understood to work synergistically to maintain leaflet structure and valvular function, few co-culture models of these cell types exist. In this study, aortic valve co-cultures (AVCCs) were assembled using magnetic levitation and cultured for 3 days. Immunohistochemistry and quantitative reverse-transcriptase polymerase chain reaction were used to assess the maintenance of cellular phenotype and function, and the formation of extracellular matrix. AVCCs stained positive for CD31 and α-smooth muscle actin (αSMA), demonstrating that the phenotype was maintained. Functional markers endothelial nitric oxide synthase (eNOS), von Willebrand factor (VWF) and prolyl-4-hydroxylase were present. Extracellular matrix components collagen type I, laminin and fibronectin also stained positive, with reduced gene expression of these proteins in three dimensions compared to two dimensions. Genes for collagen type I, lysyl oxidase and αSMA were expressed less in AVCCs than in 2-D cultures, indicating that VICs are quiescent. Co-localization of CD31 and αSMA in the AVCCs suggests that endothelial-mesenchymal transdifferentiation might be occurring. Differences in VWF and eNOS in VECs cultured in two and three dimensions also suggests that the AVCCs possibly have anti-thrombotic potential. Overall, a co-culture model of the aortic valve was designed, and serves as a basis for future experiments to understand heart valve biology.


Asunto(s)
Válvula Aórtica/citología , Técnicas de Cocultivo/métodos , Fenómenos Magnéticos , Modelos Biológicos , Animales , Biomarcadores/metabolismo , Células Endoteliales/citología , Matriz Extracelular/metabolismo , Humanos , Inmunohistoquímica , Fenotipo , Sus scrofa
16.
Nat Protoc ; 8(10): 1940-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24030442

RESUMEN

Recently, biomedical research has moved toward cell culture in three dimensions to better recapitulate native cellular environments. This protocol describes one method for 3D culture, the magnetic levitation method (MLM), in which cells bind with a magnetic nanoparticle assembly overnight to render them magnetic. When resuspended in medium, an external magnetic field levitates and concentrates cells at the air-liquid interface, where they aggregate to form larger 3D cultures. The resulting cultures are dense, can synthesize extracellular matrix (ECM) and can be analyzed similarly to the other culture systems using techniques such as immunohistochemical analysis (IHC), western blotting and other biochemical assays. This protocol details the MLM and other associated techniques (cell culture, imaging and IHC) adapted for the MLM. The MLM requires 45 min of working time over 2 d to create 3D cultures that can be cultured in the long term (>7 d).


Asunto(s)
Técnicas de Cultivo de Célula , Magnetismo/métodos , Células Cultivadas , Nanopartículas/química
17.
Sci Rep ; 3: 3000, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24141454

RESUMEN

There is a growing demand for in vitro assays for toxicity screening in three-dimensional (3D) environments. In this study, 3D cell culture using magnetic levitation was used to create an assay in which cells were patterned into 3D rings that close over time. The rate of closure was determined from time-lapse images taken with a mobile device and related to drug concentration. Rings of human embryonic kidney cells (HEK293) and tracheal smooth muscle cells (SMCs) were tested with ibuprofen and sodium dodecyl sulfate (SDS). Ring closure correlated with the viability and migration of cells in two dimensions (2D). Images taken using a mobile device were similar in analysis to images taken with a microscope. Ring closure may serve as a promising label-free and quantitative assay for high-throughput in vivo toxicity in 3D cultures.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Microscopía , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Ibuprofeno/toxicidad , Concentración 50 Inhibidora , Microscopía/métodos , Toxicología
18.
Nat Nanotechnol ; 5(4): 291-6, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20228788

RESUMEN

Cell culture is an essential tool in drug discovery, tissue engineering and stem cell research. Conventional tissue culture produces two-dimensional cell growth with gene expression, signalling and morphology that can be different from those found in vivo, and this compromises its clinical relevance. Here, we report a three-dimensional tissue culture based on magnetic levitation of cells in the presence of a hydrogel consisting of gold, magnetic iron oxide nanoparticles and filamentous bacteriophage. By spatially controlling the magnetic field, the geometry of the cell mass can be manipulated, and multicellular clustering of different cell types in co-culture can be achieved. Magnetically levitated human glioblastoma cells showed similar protein expression profiles to those observed in human tumour xenografts. Taken together, these results indicate that levitated three-dimensional culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and may be more feasible for long-term multicellular studies.


Asunto(s)
Óxido Ferrosoférrico/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Magnetismo/métodos , Técnicas de Cultivo de Tejidos/métodos , Astrocitos , Línea Celular Tumoral , Glioblastoma , Oro/química , Humanos , Inovirus/química , Microscopía Fluorescente , Proteínas/metabolismo
19.
J Chem Phys ; 127(11): 114320, 2007 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-17887850

RESUMEN

The millimeter-wave rotational spectra of the lowest bending and stretching vibrational levels of CCH and CCD were observed in a low pressure discharge through acetylene and helium. The rotational, centrifugal distortion, and fine structure constants were determined for the (02(0)0) and (02(2)0) bending states, the (100) and (001) stretching levels, and the (011) combination level of CCH. The same pure bending and stretching levels, and the (110) combination level were observed in CCD. Apparent anomalies in the spectroscopic constants in the bending states were shown to be due to l-type resonances. Hyperfine constants, which in CCH are sensitive to the degree of admixture of the A 2Pi excited electronic state, were determined in the excited vibrational levels of both isotopic species. Theoretical Fermi contact and dipole-dipole hyperfine constants calculated by Peric et al. [J. Mol. Spectrosc. 150, 70 (1991)] were found to be in excellent agreement with the measured constants. In CCD, new rotational lines tentatively assigned to the (100) level largely on the basis of the observed hyperfine structure support the assignment of the C-H stretching fundamental (nu1) by Stephens et al. [J. Mol. Struct. 190, 41 (1988)]. Rotational lines in the excited vibrational levels of CCH are fairly intense in our discharge source because the vibrational excitation temperatures of the bending vibrational levels and the (110) and (011) combination levels are only about 100 K higher than the gas kinetic temperature, unlike the higher frequency stretching vibrations, where the excitation temperatures are five to ten times higher.

20.
Phys Rev Lett ; 99(15): 155001, 2007 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-17995174

RESUMEN

We study the expansion of ultracold neutral plasmas in the regime in which inelastic collisions are negligible. The plasma expands due to the thermal pressure of the electrons, and for an initial spherically symmetric Gaussian density profile, the expansion is self-similar. Measurements of the plasma size and ion kinetic energy using fluorescence imaging and spectroscopy show that the expansion follows an analytic solution of the Vlasov equations for an adiabatically expanding plasma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA