Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(46): 31655-31666, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37964643

RESUMEN

The dissociative double photoionization of isoxazole molecules has been investigated experimentally and theoretically. The experiment has been carried out in the 27.5-36 eV photon energy range using vacuum ultraviolet (VUV) synchrotron radiation excitation combined with ion time-of-flight (TOF) spectrometry and photoelectron-photoion-photoion coincidence (PEPIPICO) technique. Five well-resolved two-body dissociation channels have been identified in the isoxazole's coincidence maps, and their appearance energies have been determined. The coincidence yield curves of these dissociation channels have been obtained in the photon energy ranges from their appearance energies up to 36 eV. The double photoionization of isoxazole produces a C3H3NO2+ transient dication, which decomposes into fragments differing from previously reported photofragmentation products of isoxazole. We have found no evidence of pathways leading to the C3H2NO+, HCN+, C2H2O+, C3HN+, or C2H2+ fragments or their neutral counterparts that have been observed in previous neutral photodissociation and single photoionization studies. Instead, the dissociation of isoxazole after the ejection of two electrons is bond-selective and is governed by two reactions, HCO+ + H2CCN+ and H2CO+ + HCCN+, whose appearance energies are 28.6 (±0.3) and 29.4 (±0.3) eV, respectively. A third dissociation channel turns out to be a variant of the most intense channel (HCO+ + H2CCN+), where one of the fragment ions contains a heavy isotope. Two minor dissociation channels occurring at higher energies, CO+ + CH3CN+ and CN+ + H3CCO+, are also identified. The density functional and ab initio quantum chemical calculations have been performed to elucidate the dissociative charge-separating mechanisms and determine the energies of the observed photoproducts. The present work unravels hitherto unexplored photodissociation mechanisms of isoxazole and thus provides deeper insight into the photophysics of five-membered heterocyclic molecules containing two heteroatoms.

2.
Phys Chem Chem Phys ; 25(7): 5795-5807, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36744651

RESUMEN

Photodissociation molecular dynamics of gas-phase 2,5-diiodothiophene molecules was studied in an electron-energy-resolved electron-multi-ion coincidence experiment performed at the FinEstBeAMS beamline of MAX IV synchrotron. Following the photoionization of the iodine 4d subshell and the Auger decay, the dissociation landscape of the molecular dication was investigated as a function of the Auger electron energy. Concentrating on an major dissociation pathway, C4H2I2S2+ → C4H2S+ + I+ + I, and accessing the timescales of the process via ion momentum correlation analysis, it was revealed how this three-body process changes depending on the available internal energy. Using a generalized secondary dissociation model, the process was shown to evolve from secondary dissociation regime towards concerted dissociation as the available energy increased, with the secondary dissociation time constant changing from 1.5 ps to 129 fs. The experimental results were compared with simulations using a stochastic charge-hopping molecular mechanics model. It represented the observed trend and also gave a fair quantitative agreement with the experiment.

3.
Phys Chem Chem Phys ; 25(18): 13004-13011, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165880

RESUMEN

Heavy elements and some nitroimidazoles both exhibit radiosensitizing properties through different mechanisms. In an effort to see how the overall radiosensitivity might be affected when the two radiosensitizers are combined in the same molecule, we studied the gas-phase photodissociation of two brominated nitroimidazoles and a bromine-free reference sample. Synchrotron radiation was employed to initiate the photodynamics and energy-resolved multiparticle coincidence spectroscopy was used to study the ensuing dissociation. We observed the brominated samples releasing high amounts of potentially radiosensitizing fragments upon dissociation. Since bromination also increases the likelihood of the drug molecule being ionised per a given X-ray dose, we conclude that heavy-element substitution of nitroimidazoles appears to be a viable path towards new, potent radiosensitizer drugs.

4.
J Phys Chem A ; 127(6): 1395-1401, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36749682

RESUMEN

Intramolecular hydrogen transfer, a reaction where donor and acceptor sites of a hydrogen atom are part of the same molecule, is a ubiquitous reaction in biochemistry and organic synthesis. In this work, we report hydronium ion (H3O+) production from aminobenzoic acid (ABA) after core-level ionization with soft X-ray synchrotron radiation. The formation of H3O+ during the fragmentation requires that at least two hydrogen atoms migrate to one of the oxygen atoms within the molecule. The comparison of two structural isomers, ortho- and meta-ABA, revealed that the production of H3O+ depends strongly on the structure of the molecule, the ortho-isomer being much more prone to produce H3O+. The isomer-dependency suggests that the amine group acts as a donor in the hydrogen transfer process. In the case of ortho-ABA, detailed H3O+ production pathways were investigated using photoelectron-photoion-photoion coincidence (PEPIPICO) spectroscopy. It was found that H3O+ can result from a direct two-body dissociation but also from sequential fragmentation processes.

5.
J Synchrotron Radiat ; 28(Pt 5): 1620-1630, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34475309

RESUMEN

FinEstBeAMS (Finnish-Estonian Beamline for Atmospheric and Materials Sciences) is a multidisciplinary beamline constructed at the 1.5 GeV storage ring of the MAX IV synchrotron facility in Lund, Sweden. The beamline covers an extremely wide photon energy range, 4.5-1300 eV, by utilizing a single elliptically polarizing undulator as a radiation source and a single grazing-incidence plane grating monochromator to disperse the radiation. At photon energies below 70 eV the beamline operation relies on the use of optical and thin-film filters to remove higher-order components from the monochromated radiation. This paper discusses the performance of the beamline, examining such characteristics as the quality of the gratings, photon energy calibration, photon energy resolution, available photon flux, polarization quality and focal spot size.

6.
Phys Chem Chem Phys ; 23(37): 21249-21261, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34542547

RESUMEN

We studied the gas-phase photodissociation of a fully halogenated aromatic molecule, tetrabromothiophene, upon core-shell ionization by using synchrotron radiation and energy-resolved multiparticle coincidence spectroscopy. Photodynamics was initiated by the selective soft X-ray ionization of three elements - C, S, and Br - leading to the formation of dicationic states by Auger decay. From a detailed study of photodissociation upon Br 3d ionization, we formulate a general fragmentation scheme, where dissociation into neutral fragments and a pair of cations prevails, but dicationic species are also produced. We conclude that dicationic tetrabromothiophene typically undergoes deferred charge separation (with one of the ions being often Br+) that may be followed by secondary dissociation steps, depending on the available internal energy of the parent dication. Observations suggest that the ejection of neutral bromine atoms as the first step of deferred charge separation is a prevailing feature in dicationic dissociation, although sometimes in this step the C-Br bonds appear to remain intact and the thiophene ring is broken instead. Ionization-site-specific effects are observed particularly in doubly charged fragments and as large differences in the yields of the intact parent dication. We interpret these effects, using first-principles calculations and molecular dynamics simulations of core-hole states, as likely caused by the geometry changes during the core-hole lifetime.

7.
J Phys Chem A ; 125(3): 713-720, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33434028

RESUMEN

Dissociation of water molecules after soft X-ray absorption can yield neutral fragments in high-Rydberg (HR) states. We have studied the production of such fragments by field ionization and ion time-of-flight (TOF) spectrometry. Neutral HR fragments are created at all resonances below the O 1s ionization potential (IP) and particularly within 1 eV above the O 1s IP. The latter effect is due to the recapture of the O 1s photoelectrons into HR orbitals of the molecular water ion after the emission of a fast Auger electron. H2O+(HR) fragments subsequently dissociate, yielding neutral H(HR) and O(HR) fragments, as were found by measuring the TOF spectra by pulsed field ionization. Such measurements were carried out at the O 1s → 4a1 and 2b2 resonances as well as just above the O 1s IP. The TOF spectra also reveal two series of oscillatory structures that are attributed to quantum beats involving Lyman emission in one of the series and field ionization of H(HR) fragments in the other series.

8.
J Phys Chem A ; 125(22): 4750-4759, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34034483

RESUMEN

The solvation of alkali and halide ions in the aqueous environment has been a subject of intense experimental and theoretical research with multidisciplinary interests; yet, a comprehensive molecular-level understanding has still not been obtained. In recent years, electron spectroscopy has been increasingly applied to study the electronic and structural properties of aqueous ions with implications, especially in atmospheric chemistry. In this work, we report core and valence level (Cl 2p, Cl 3p, and K 3p) photoelectron spectra of the common alkali halide, KCl, doped in gas-phase water clusters in the size range of a few hundred water molecules. The results indicate that the electronic structure of these nanosolutions shows a distinct character from that observed at the liquid-vapor interface in liquid microjets and ambient pressure setups. Insights are provided into the unique solvation properties of ions in a nanoaqueous environment, emerging properties of bulk electrolyte solutions with growing cluster size, and sensitivity of the electronic structure to varying solvation configurations.

9.
J Synchrotron Radiat ; 27(Pt 4): 1080-1091, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33566019

RESUMEN

Since spring 2019 an experimental setup consisting of an electron spectrometer and an ion time-of-flight mass spectrometer for diluted samples has been available for users at the FinEstBeAMS beamline of the MAX IV Laboratory in Lund, Sweden. The setup enables users to study the interaction of atoms, molecules, (molecular) microclusters and nanoparticles with short-wavelength (vacuum ultraviolet and X-ray) synchrotron radiation and to follow the electron and nuclear dynamics induced by this interaction. Test measurements of N2 and thiophene (C4H4S) molecules have demonstrated that the setup can be used for many-particle coincidence spectroscopy. The measurements of the Ar 3p photoelectron spectra by linear horizontal and vertical polarization show that angle-resolved experiments can also be performed. The possibility to compare the electron spectroscopic results of diluted samples with solid targets in the case of Co2O3 and Fe2O3 at the Co and Fe L2,3-absorption edges in the same experimental session is also demonstrated. Because the photon energy range of the FinEstBeAMS beamline extends from 4.4 eV up to 1000 eV, electron, ion and coincidence spectroscopy studies can be executed in a very broad photon energy range.

10.
J Phys Chem A ; 123(7): 1295-1302, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30668129

RESUMEN

The initial deactivation pathways of gaseous 2-nitrophenol excited at 268 nm were investigated by time-resolved photoelectron spectroscopy (TRPES) with femtosecond-VUV light, produced by a monochromatized high harmonic generation source. TRPES allowed us to obtain new, valuable experimental information about the ultrafast excited-state dynamics of 2-nitrophenol in the gas phase. In accord with recent ab initio on-the-fly nonadiabatic molecular dynamic simulations, our results validate the occurrence of an ultrafast intersystem crossing leading to an intermediate state that decays on a subpicosecond time scale with a branched mechanisms. Two decay pathways are experimentally observed. One probably involves proton transfer, leading to the most stable triplet aci-form of 2-nitrophenol; the second pathway may involve OH rotation. We propose that following intersystem crossing, an ultrafast fragmentation channel leading to OH or HONO loss could also be operative.

11.
Phys Chem Chem Phys ; 20(4): 2480-2491, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29313539

RESUMEN

Insights into the electronic structure of galvinoxyl - a prototype persistent free radical species - are of interest to elucidate its attractive photophysical and magnetic properties and to pave way for a sensible design of novel applications. To this end, we study the photoionization and photoexcitation UPS, XPS and NEXAFS spectra of the gas-phase galvinoxyl in the valence and core (C 1s and O 1s) regions using synchrotron X-ray radiation. We observe significant variations of relative band intensities with photon energy for valence ionizations below 10 eV which are rationalized in terms of the properties of the corresponding valence molecular orbitals. We calculate the core electron binding energies and core-excited states by employing the spin-unrestricted ΔDFT (B3LYP, M06-2X, and ωB97xD) and time-dependent DFT (SRC2-BLYP) methods. A good correlation between the calculations and the measured C 1s and O 1s XPS and NEXAFS spectra is obtained if one assumes that the galvinoxyl sample has undergone a partial degradation (around 50%) to the saturated (closed-shell) phenolic-quinonic derivative known as galvinol. We carry out a comparative theoretical analysis of the XPS and NEXAFS spectra of galvinoxyl and galvinol by assigning the relevant absorptions and pointing out the most important relative differences. The calculations identify a band in the O 1s NEXAFS spectrum whose diminishing intensity is a most manifest indicator of the extent of the degradation. Such a feature may thus prove useful in monitoring the scavenging dynamics of galvinoxyl using the core-excitation spectroscopy.

12.
J Phys Chem A ; 122(1): 224-233, 2018 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-29237124

RESUMEN

We have studied the fragmentation of the methanol molecule after core excitation and core ionization by observing coincidences between negative and positive ions. Five different negative ions (H-, C-, CH-, O-, and OH-) were observed at both the C 1s and O 1s edges. As negative ion formation occurs after resonant and normal Auger decay of core-hole states, it is necessarily linked with the release of positively charged fragments. Our data show that such fragmentation can happen in many different ways: We found approximately 30 negative-ion/positive-ion/positive-ion coincidence (NIPIPICO) channels. All involve only singly charged positive ions. Fragmentation channels leading to atomic ions are the most probable, but positive molecular ions are also frequently found in the context of anion formation. Coincidence yields as a function of photon energy were determined for the most intense NIPIPICO channels. Adding together the data measured at different photon energies, we could also verify the occurrence of four-ion coincidences, which involved one negative ion (H- or O-) and three positive ions.

13.
Phys Chem Chem Phys ; 18(15): 10207-17, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27020039

RESUMEN

Core-hole spectroscopy adds to the fundamental understanding of the electronic structure of stable nitroxide free radicals thus paving way for a sensible design of new analogues with desired functionalities. We study the gas-phase C 1s, N 1s and O 1s excitation spectra of three nitroxide free radicals - TEMPO and two of its amide-substituted analogues - using the experimental NEXAFS technique and the theoretical TDDFT and ΔDFT methods in the unrestricted setting. The short-range corrected SRC1-BLYP and SRC2-BLYP exchange-correlation functionals are used with TDDFT, and the standard B3LYP functional with ΔDFT. The TDDFT-based detailed spectral assignment includes the valence, mixed valence-Rydberg and Rydberg portions of the spectra from the onset of absorptions to the vicinity of the core-ionization thresholds. The relative overlaps between the experimental and TDDFT-modelled spectra are reasonably good, in the range of 0.7-0.8, 0.6-0.8, and 0.7-0.8 for the C 1s, N 1s, and O 1s spectra, respectively. The extent of spin contamination within the unrestricted framework and its effect on the accuracy of the calculated excitation energies and dipole intensities are discussed in detail. It is concluded that, despite the sizeable spin contamination, the presently used methods are capable of predicting the core-excitation spectra of comparatively large free radical species fairly reliably over a wide spectral range.

14.
J Phys Chem A ; 120(32): 6389-93, 2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27442879

RESUMEN

We report yields of mass-resolved negative ions and positive ions measured in coincidence after core excitation of water molecules. The analysis of negative-ion/positive-ion and negative-ion/positive-ion/positive-ion coincidence events provides new information on pathways leading to negative ion production, enhancing the present understanding of the dissociation processes of the water molecule. Dissociation following (resonant) Auger decay dominates negative ion production, but radiative decay is shown to contribute above the O 1s ionization threshold. A peak in the H(-)/O(+) yield above the O 1s threshold is attributed to decay from doubly excited states.

15.
J Phys Chem A ; 120(25): 4360-7, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27276338

RESUMEN

We have studied the production of neutral fragments in high-Rydberg (HR) states at the C 1s and O 1s edges of the CO2 molecule by performing two kinds of experiments. First, the yields of neutral HR fragments were measured indirectly by ionizing such fragments in a static electric field and by collecting resulting singly charged positive ions as a function of the photon energy. Such measurements reveal not only excitations below the core ionization thresholds but also thresholds for single core-hole and shakeup photoionization. Second, we obtained the mass spectra of neutral HR fragments at selected photon energies by exploiting pulsed field ionization; they show atomic fragments C(HR) and O(HR). We discuss dissociation pathways leading to the production of neutral HR fragments in core excitation and ionization of CO2.

16.
J Synchrotron Radiat ; 22(3): 538-43, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931066

RESUMEN

The Low Density Matter (LDM) beamline has been built as part of the FERMI free-electron laser (FEL) facility to serve the atomic, molecular and cluster physics community. After the commissioning phase, it received the first external users at the end of 2012. The design and characterization of the LDM photon transport system is described, detailing the optical components of the beamline.

17.
Phys Chem Chem Phys ; 17(16): 10656-67, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25804194

RESUMEN

The photoionization of three N-heterocyclic carbenes (NHCs) has been studied in the valence and core regions using synchrotron radiation. We observed different variations in the relative band intensities with photon energy for the NHCs in the valence ionization region. This is due to the intra-ring interactions between the C=C bond, nitrogen and carbene lone pairs in the heterocyclic ring of NHCs. In the core ionization region we observed chemical shifts which are consistent with the relative electron affinities of atoms and intramolecular electron density shifts. The core electron binding energies calculated via the unrestricted ΔDFT (B3LYP and M06-2X) approach are in very good agreement with the experiment. The shake-up portion of the core photoionization spectra is adequately described by the time-dependent DFT calculations relying on the CAM-B3LYP functional.

18.
Phys Chem Chem Phys ; 17(34): 22160-9, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26256039

RESUMEN

The X-ray absorption spectra (XAS) of Ar2 and ArNe dimers and small Ar clusters in the L2,3 region (244-252 eV) of the Ar atom have been recorded using synchrotron light and a combination of coincidence methods and kinetic energy discrimination of energetic ions. The absorption peaks in the spectra of the dimers and clusters were found to be shifted and broadened relative to the peaks in the spectrum of the Ar atom. In order to unambiguously relate these chemical shifts to the electronic structure of the core excited states in dimers, we performed ab initio calculations of the XAS spectra. Implications of the results for the use of XAS as a structure determination method in large rare gas clusters are discussed.

19.
Phys Chem Chem Phys ; 16(22): 10734-42, 2014 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-24756363

RESUMEN

The photoionization of three stable nitroxyl radicals has been studied in the valence and core regions using synchrotron radiation. We observed different variations of the relative band intensities with the photon energy for two pyrrolidine nitroxyls (nitroxyl8 and nitroxyl9) in the valence ionization region. This is due to strong intramolecular interactions between the amide substituent and the ring π-orbital when present. In the core ionization region we observed chemical shifts which were consistent with the relative electron affinities of different atoms. We also observed the multiplet splitting of core level binding energies in the final ionic states. The core electron binding energies calculated via the restricted open shell Hartree-Fock based ΔSCF method exhibit good agreement with the experimental core ionization bands and with the assignment of the spectra by empirical analysis.


Asunto(s)
Electrones , Óxidos de Nitrógeno/química , Estructura Molecular , Espectroscopía de Fotoelectrones
20.
J Chem Phys ; 141(6): 064301, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25134565

RESUMEN

Formation of the excited NH(A(3)Π) free radicals in the photodissociation of isoxazole (C3H3NO) molecules has been studied over the 14-22 eV energy range using photon-induced fluorescence spectroscopy. The NH(A(3)Π) is produced through excitation of the isoxazole molecules into higher-lying superexcited states. Observation of the NH radical, which is not a structural unit of the isoxazole molecule, corroborates the hydrogen atom (or proton) migration within the molecule prior to dissociation. The vertical excitation energies of the superexcited states were determined and the dissociation mechanisms of isoxazole are discussed. The density functional and ab initio quantum chemical calculations have been performed to study the mechanism of the NH formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA