Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Psychiatry ; 27(3): 1694-1703, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34997193

RESUMEN

The amygdala, a critical brain region responsible for emotional behavior, is crucially involved in the regulation of the effects of stress on emotional behavior. In the mammalian forebrain, gastrin-releasing peptide (GRP), a 27-amino-acid mammalian neuropeptide, which is a homolog of the 14-amino-acid amidated amphibian peptide bombesin, is highly expressed in the amygdala. The levels of GRP are markedly increased in the amygdala after acute stress; therefore, it is known as a stress-activated modulator. To determine the role of GRP in emotional behavior under stress, we conducted some behavioral and biochemical experiments with GRP-knockout (KO) mice. GRP-KO mice exhibited a longer freezing response than wild-type (WT) littermates in both contextual and auditory fear (also known as threat) conditioning tests only when they were subjected to acute restraint stress 20 min before the conditioning. To identify the critical neural circuits associated with the regulation of emotional memory by GRP, we conducted Arc/Arg3.1-reporter mapping in the amygdala with an Arc-Venus reporter transgenic mouse line. In the amygdalostriatal transition area (AST) and the lateral side of the basal nuclei, fear conditioning after restraint stress increased neuronal activity significantly in WT mice, and GRP KO was found to negate this potentiation only in the AST. These results indicate that the GRP-activated neurons in the AST are likely to suppress excessive fear expression through the regulation of downstream circuits related to fear learning following acute stress.


Asunto(s)
Bombesina , Miedo , Amígdala del Cerebelo/metabolismo , Animales , Bombesina/metabolismo , Bombesina/farmacología , Condicionamiento Clásico/fisiología , Miedo/fisiología , Péptido Liberador de Gastrina/metabolismo , Péptido Liberador de Gastrina/farmacología , Mamíferos/metabolismo , Ratones , Ratones Noqueados
2.
J Neurochem ; 154(1): 25-40, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31587290

RESUMEN

Vanishing white matter disease (VWM) is an autosomal recessive neurological disorder caused by mutation(s) in any subunit of eukaryotic translation initiation factor 2B (eIF2B), an activator of translation initiation factor eIF2. VWM occurs with mutation of the genes encoding eIF2B subunits (EIF2B1, EIF2B2, EIF2B3, EIF2B4, and EIF2B5). However, little is known regarding the underlying pathogenetic mechanisms or how to treat patients with VWM. Here we describe the identification and detailed analysis of a new spontaneous mutant mouse harboring a point mutation in the Eif2b5 gene (p.Ile98Met). Homozygous Eif2b5I98M mutant mice exhibited a small body, abnormal gait, male and female infertility, epileptic seizures, and a shortened lifespan. Biochemical analyses indicated that the mutant eIF2B protein with the Eif2b5I98M mutation decreased guanine nucleotide exchange activity on eIF2, and the level of the endoplasmic reticulum stress marker activating transcription factor 4 was elevated in the 1-month-old Eif2b5I98M brain. Histological analyses indicated up-regulated glial fibrillary acidic protein immunoreactivity in the astrocytes of the Eif2b5I98M forebrain and translocation of Bergmann glia in the Eif2b5I98M cerebellum, as well as increased mRNA expression of an endoplasmic reticulum stress marker, C/EBP homologous protein. Disruption of myelin and clustering of oligodendrocyte progenitor cells were also indicated in the white matter of the Eif2b5I98M spinal cord at 8 months old. Our data show that Eif2b5I98M mutants are a good model for understanding VWM pathogenesis and therapy development. Cover Image for this issue: doi: 10.1111/jnc.14751.


Asunto(s)
Modelos Animales de Enfermedad , Factor 2B Eucariótico de Iniciación/genética , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Neuroglía/patología , Animales , Encéfalo/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación Puntual
3.
Lab Invest ; 98(11): 1364-1374, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29967341

RESUMEN

Cadherin 11 (Cdh11), a member of the cadherin adhesion molecule family, is expressed in various regions of the brain as well as the head and ear. To gain further insights into the roles of Cdh11 in the development of the ear, we performed behavioral tests using Cdh11 knockout (KO) mice. KO mice showed reduced acoustic startle responses and increased thresholds for auditory brainstem responses, indicating moderate hearing loss. The auditory bulla volume and ratio of air-filled to non-air-filled space in the middle ear cavity were reduced in KO mice, potentially causing conductive hearing loss. Furthermore, residual mesenchymal and inflammatory cells were observed in the middle ear cavity of KO mice. Cdh11 was expressed in developing mesenchymal cells just before the start of cavitation, indicating that Cdh11 may be directly involved in middle ear cavitation. Since the auditory bulla is derived from the neural crest, the regulation of neural crest-derived cells by Cdh11 may be responsible for structural development. This mutant mouse may be a promising animal model for elucidating the causes of conductive hearing loss and otitis media.


Asunto(s)
Cadherinas/fisiología , Oído Medio/crecimiento & desarrollo , Audición , Animales , Femenino , Masculino , Ratones Noqueados
4.
J Neurosci ; 34(17): 5927-37, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24760852

RESUMEN

LMTK3 belongs to the LMTK family of protein kinases that are predominantly expressed in the brain. Physiological functions of LMTK3 and other members of the LMTK family in the CNS remain unknown. In this study, we performed a battery of behavioral analyses using Lmtk3(-/-) mice and showed that these mice exhibit abnormal behaviors, including pronounced locomotor hyperactivity, reduced anxiety behavior, and decreased depression-like behavior. Concurrently, the dopamine metabolite levels and dopamine turnover rate are increased in the striata of Lmtk3(-/-) mice compared with wild-type controls. In addition, using cultured primary neurons from Lmtk3(-/-) mice, we found that LMTK3 is involved in the endocytic trafficking of N-methyl-d-aspartate receptors, a type of ionotropic glutamate receptor. Altered membrane traffic of the receptor in Lmtk3(-/-) neurons may underlie behavioral abnormalities in the mutant animals. Together, our data suggest that LMTK3 plays an important role in regulating locomotor behavior in mice.


Asunto(s)
Conducta Animal/fisiología , Endocitosis/genética , Hipercinesia/genética , Proteínas de la Membrana/genética , Actividad Motora/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Ansiedad/genética , Ansiedad/metabolismo , Células Cultivadas , Cuerpo Estriado/metabolismo , Depresión/genética , Depresión/metabolismo , Dopamina/metabolismo , Hipercinesia/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Eur J Neurosci ; 40(8): 3136-46, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25131300

RESUMEN

The N-methyl-D-aspartate receptor (NMDAR) plays various physiological and pathological roles in neural development, synaptic plasticity and neuronal cell death. It is composed of two GluN1 and two GluN2 subunits and, in the neonatal hippocampus, most synaptic NMDARs are GluN2B-containing receptors, which are gradually replaced with GluN2A-containing receptors during development. Here, we examined whether GluN2A could be substituted for GluN2B in neural development and functions by analysing knock-in (KI) mice in which GluN2B is replaced with GluN2A. The KI mutation was neonatally lethal, although GluN2A-containing receptors were transported to the postsynaptic membrane even without GluN2B and functional at synapses of acute hippocampal slices of postnatal day 0, indicating that GluN2A-containing NMDARs could not be substituted for GluN2B-containing NMDARs. Importantly, the synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit GluA1 was increased, and the transmembrane AMPAR regulatory protein, which is involved in AMPAR synaptic trafficking, was increased in KI mice. Although the regulation of AMPARs by GluN2B has been reported in cultured neurons, we showed here that AMPAR-mediated synaptic responses were increased in acute KI slices, suggesting differential roles of GluN2A and GluN2B in AMPAR expression and trafficking in vivo. Taken together, our results suggest that GluN2B is essential for the survival of animals, and that the GluN2B-GluN2A switching plays a critical role in synaptic integration of AMPARs through regulation of GluA1 in the whole animal.


Asunto(s)
Encéfalo/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Animales Recién Nacidos , Técnicas de Sustitución del Gen , Ratones , Transporte de Proteínas , Receptores de N-Metil-D-Aspartato/genética
6.
EMBO J ; 28(23): 3717-29, 2009 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19834457

RESUMEN

Major depressive and bipolar disorders are serious illnesses that affect millions of people. Growing evidence implicates glutamate signalling in depression, though the molecular mechanism by which glutamate signalling regulates depression-related behaviour remains unknown. In this study, we provide evidence suggesting that tyrosine phosphorylation of the NMDA receptor, an ionotropic glutamate receptor, contributes to depression-related behaviour. The NR2A subunit of the NMDA receptor is tyrosine-phosphorylated, with Tyr 1325 as its one of the major phosphorylation site. We have generated mice expressing mutant NR2A with a Tyr-1325-Phe mutation to prevent the phosphorylation of this site in vivo. The homozygous knock-in mice show antidepressant-like behaviour in the tail suspension test and in the forced swim test. In the striatum of the knock-in mice, DARPP-32 phosphorylation at Thr 34, which is important for the regulation of depression-related behaviour, is increased. We also show that the Tyr 1325 phosphorylation site is required for Src-induced potentiation of the NMDA receptor channel in the striatum. These data argue that Tyr 1325 phosphorylation regulates NMDA receptor channel properties and the NMDA receptor-mediated downstream signalling to modulate depression-related behaviour.


Asunto(s)
Depresión/metabolismo , Depresión/fisiopatología , Receptores de N-Metil-D-Aspartato/fisiología , Tirosina/fisiología , Animales , Línea Celular , Depresión/genética , Depresión/psicología , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Técnicas de Sustitución del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenilalanina/genética , Fosforilación/genética , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/genética , Tirosina/genética
7.
Mol Brain ; 15(1): 23, 2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35279170

RESUMEN

Calsyntenins (CLSTNs) are important synaptic molecules whose molecular functions are not fully understood. Although mutations in calsyntenin (CLSTN) genes have been associated with psychiatric disorders in humans, their function is still unclear. One of the reasons why the function of CLSTNs in the nervous system has not been clarified is the functional redundancy among the three paralogs. Therefore, to investigate the functions of mammalian CLSTNs, we generated triple knockout (TKO) mice lacking all CLSTN paralogs and examined their behavior. The mutant mice tended to freeze in novel environments and exhibited hypersensitivity to stress. Consistent with this, glucose levels under stress were significantly higher in the mutant mice than in the wild-type controls. In particular, phenotypes such as decreased motivation, which had not been reported in single Clstn KO mice, were newly discovered. The TKO mice generated in this study represent an important mouse model for clarifying the function of CLSTN in the future.


Asunto(s)
Interneuronas , Proteínas de la Membrana , Animales , Humanos , Mamíferos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Fenotipo
8.
Transl Psychiatry ; 12(1): 302, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906220

RESUMEN

Stress affects behavior and involves critical dynamic changes at multiple levels ranging from molecular pathways to neural circuits and behavior. Abnormalities at any of these levels lead to decreased stress resilience and pathological behavior. However, temporal modulation of molecular pathways underlying stress response remains poorly understood. Transducer of ErbB2.1, known as TOB, is involved in different physiological functions, including cellular stress and immediate response to stimulation. In this study, we investigated the role of TOB in psychological stress machinery at molecular, neural circuit, and behavioral levels. Interestingly, TOB protein levels increased after mice were exposed to acute stress. At the neural circuit level, functional magnetic resonance imaging (fMRI) suggested that intra-hippocampal and hippocampal-prefrontal connectivity were dysregulated in Tob knockout (Tob-KO) mice. Electrophysiological recordings in hippocampal slices showed increased postsynaptic AMPAR-mediated neurotransmission, accompanied by decreased GABA neurotransmission and subsequently altered Excitatory/Inhibitory balance after Tob deletion. At the behavioral level, Tob-KO mice show abnormal, hippocampus-dependent, contextual fear conditioning and extinction, and depression-like behaviors. On the other hand, increased anxiety observed in Tob-KO mice is hippocampus-independent. At the molecular level, we observed changes in factors involved in stress response like decreased stress-induced LCN2 expression and ERK phosphorylation, as well as increased MKP-1 expression. This study introduces TOB as an important modulator in the hippocampal stress signaling machinery. In summary, we reveal a molecular pathway and neural circuit mechanism by which Tob deletion contributes to expression of pathological stress-related behavior.


Asunto(s)
Miedo , Hipocampo , Animales , Extinción Psicológica/fisiología , Miedo/fisiología , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Estrés Psicológico , Transmisión Sináptica/fisiología
9.
EMBO Mol Med ; 13(4): e12574, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33656268

RESUMEN

Genomic defects with large effect size can help elucidate unknown pathologic architecture of mental disorders. We previously reported on a patient with schizophrenia and a balanced translocation between chromosomes 4 and 13 and found that the breakpoint within chromosome 4 is located near the LDB2 gene. We show here that Ldb2 knockout (KO) mice displayed multiple deficits relevant to mental disorders. In particular, Ldb2 KO mice exhibited deficits in the fear-conditioning paradigm. Analysis of the amygdala suggested that dysregulation of synaptic activities controlled by the immediate early gene Arc is involved in the phenotypes. We show that LDB2 forms protein complexes with known transcription factors. Consistently, ChIP-seq analyses indicated that LDB2 binds to > 10,000 genomic sites in human neurospheres. We found that many of those sites, including the promoter region of ARC, are occupied by EGR transcription factors. Our previous study showed an association of the EGR family genes with schizophrenia. Collectively, the findings suggest that dysregulation in the gene expression controlled by the LDB2-EGR axis underlies a pathogenesis of subset of mental disorders.


Asunto(s)
Esquizofrenia , Animales , Miedo , Expresión Génica , Humanos , Proteínas con Dominio LIM/genética , Ratones , Ratones Noqueados , Esquizofrenia/genética , Factores de Transcripción/genética
10.
Nat Commun ; 7: 10594, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26839058

RESUMEN

Intracellular trafficking of receptor proteins is essential for neurons to detect various extracellular factors during the formation and refinement of neural circuits. However, the precise mechanisms underlying the trafficking of neurotrophin receptors to synapses remain elusive. Here, we demonstrate that a brain-enriched sorting nexin, ARHGAP33, is a new type of regulator for the intracellular trafficking of TrkB, a high-affinity receptor for brain-derived neurotrophic factor. ARHGAP33 knockout (KO) mice exhibit reduced expression of synaptic TrkB, impaired spine development and neuropsychiatric disorder-related behavioural abnormalities. These deficits are rescued by specific pharmacological enhancement of TrkB signalling in ARHGAP33 KO mice. Mechanistically, ARHGAP33 interacts with SORT1 to cooperatively regulate TrkB trafficking. Human ARHGAP33 is associated with brain phenotypes and reduced SORT1 expression is found in patients with schizophrenia. We propose that ARHGAP33/SORT1-mediated TrkB trafficking is essential for synapse development and that the dysfunction of this mechanism may be a new molecular pathology of neuropsychiatric disorders.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Conducta Animal , Espinas Dendríticas/genética , Proteínas Activadoras de GTPasa/genética , Neuronas/metabolismo , Transporte de Proteínas/genética , ARN Mensajero/metabolismo , Receptor trkB/metabolismo , Esquizofrenia/genética , Nexinas de Clasificación/genética , Sinapsis/genética , Adulto , Animales , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Células Cultivadas , Espinas Dendríticas/metabolismo , Femenino , Proteínas Activadoras de GTPasa/metabolismo , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Immunoblotting , Inmunohistoquímica , Hibridación in Situ , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Técnicas de Placa-Clamp , Fenotipo , Polimorfismo de Nucleótido Simple , Reacción en Cadena en Tiempo Real de la Polimerasa , Esquizofrenia/metabolismo , Esquizofrenia/patología , Nexinas de Clasificación/metabolismo , Sinapsis/metabolismo
11.
Neurosci Lett ; 599: 20-5, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26002078

RESUMEN

Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus.


Asunto(s)
Envejecimiento/psicología , Ansiedad/psicología , Proteína Antagonista del Receptor de Interleucina 1/genética , Envejecimiento/metabolismo , Animales , Ansiolíticos/uso terapéutico , Ansiedad/tratamiento farmacológico , Ansiedad/genética , Ansiedad/metabolismo , Monoaminas Biogénicas/metabolismo , Diazepam/uso terapéutico , Hipocampo/metabolismo , Aprendizaje por Laberinto , Ratones Noqueados , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo
12.
Neurosci Lett ; 516(2): 270-3, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22516462

RESUMEN

Previous studies found that the NMDA receptor-mediated signaling regulates thermal nociception, though the underlying molecular mechanism remains unclear. The GluN2B subunit of the NMDA receptor is tyrosine-phosphorylated, Tyr-1472 being the major phosphorylation site. In this study, we have found that homozygous knock-in mice that express a Tyr-1472-Phe mutant of GluN2B display defects in the nociceptive response in the hot plate test. Expression of the neurotensin receptor subtype 2 (NTSR2), which is relevant to the regulation of thermal nociception, is decreased in the amygdala of GluN2B Tyr-1472-Phe knock-in mice. In addition, NTSR2-mediated c-fos induction is impaired in the amygdala of these mice. These data suggest that Tyr-1472 phosphorylation on GluN2B is involved in thermal nociception through regulating the NTSR2 mRNA expression in the amygdala.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Nocicepción/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Neurotensina/metabolismo , Animales , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Calor , Ratones , Ratones Endogámicos C57BL , Fosforilación , ARN Mensajero/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de N-Metil-D-Aspartato/genética , Tirosina/metabolismo
14.
Mol Brain ; 3: 37, 2010 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-21118530

RESUMEN

BACKGROUND: Anxiety disorders are a highly prevalent and disabling class of psychiatric disorders. There is growing evidence implicating the glutamate system in the pathophysiology and treatment of anxiety disorders, though the molecular mechanism by which the glutamate system regulates anxiety-like behavior remains unclear. RESULTS: In this study, we provide evidence suggesting that tyrosine phosphorylation of the NMDA receptor, an ionotropic glutamate receptor, contributes to anxiety-like behavior. The GluN2B subunit of the NMDA receptor is tyrosine-phosphorylated: Tyr-1472 is the major phosphorylation site. Homozygous knock-in mice that express a Tyr-1472-Phe mutant of GluN2B, which prevents phosphorylation of this site, show enhanced anxiety-like behavior in the elevated plus-maze test. Expression of corticotropin-releasing factor (CRF), which is important for the regulation of anxiety-like behavior, is increased in the amygdala of the knock-in mice. Furthermore, injection of CRF receptor antagonist attenuated the enhanced anxiety-like behavior of the knock-in mice. We also show that elevated plus-maze exposure simultaneously induced de-phosphorylation of Tyr-1472 and increased CRF expression. CONCLUSIONS: These data suggest that Tyr-1472 phosphorylation on GluN2B is important for anxiety-like behavior by negative regulation of CRF expression in the amygdala.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Ansiedad/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Receptores de N-Metil-D-Aspartato , Tirosina/metabolismo , Animales , Conducta Animal/fisiología , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
15.
Neuron ; 53(4): 535-47, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17296555

RESUMEN

Hippocampal mossy fibers project preferentially to the stratum lucidum, the proximal-most lamina of the suprapyramidal region of CA3. The molecular mechanisms that govern this lamina-restricted projection are still unknown. We examined the projection pattern of mossy fibers in mutant mice for semaphorin receptors plexin-A2 and plexin-A4, and their ligand, the transmembrane semaphorin Sema6A. We found that plexin-A2 deficiency causes a shift of mossy fibers from the suprapyramidal region to the infra- and intrapyramidal regions, while plexin-A4 deficiency induces inappropriate spreading of mossy fibers within CA3. We also report that the plexin-A2 loss-of-function phenotype is genetically suppressed by Sema6A loss of function. Based on these results, we propose a model for the lamina-restricted projection of mossy fibers: the expression of plexin-A4 on mossy fibers prevents them from entering the Sema6A-expressing suprapyramidal region of CA3 and restricts them to the proximal-most part, where Sema6A repulsive activity is attenuated by plexin-A2.


Asunto(s)
Membrana Basal/fisiología , Hipocampo/citología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Receptores de Superficie Celular/fisiología , Semaforinas/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Estimulación Eléctrica/métodos , Embrión de Mamíferos , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/efectos de la radiación , Técnicas In Vitro , Ratones , Ratones Transgénicos , Fibras Musgosas del Hipocampo/fisiología , Proteínas del Tejido Nervioso/deficiencia , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Unión Proteica/fisiología , Receptores de Superficie Celular/deficiencia , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
16.
Eur J Neurosci ; 26(8): 2269-78, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17953619

RESUMEN

Although protein-tyrosine phosphorylation is important for hippocampus-dependent learning, its role in cerebellum-dependent learning remains unclear. We previously found that PTPMEG, a cytoplasmic protein-tyrosine phosphatase expressed in Purkinje cells (PCs), bound to the carboxyl-terminus of the glutamate receptor delta2 via the postsynaptic density-95/discs-large/ZO-1 domain of PTPMEG. In the present study, we generated PTPMEG-knockout (KO) mice, and addressed whether PTPMEG is involved in cerebellar plasticity and cerebellum-dependent learning. The structure of the cerebellum in PTPMEG-KO mice appeared grossly normal. However, we found that PTPMEG-KO mice showed severe impairment in the accelerated rotarod test. These mice also exhibited impairment in rapid acquisition of the cerebellum-dependent delay eyeblink conditioning, in which conditioned stimulus (450-ms tone) and unconditioned stimulus (100-ms periorbital electrical shock) were co-terminated. Moreover, long-term depression at parallel fiber-PC synapses was significantly attenuated in these mice. Developmental elimination of surplus climbing fibers and the physiological properties of excitatory synaptic inputs to PCs appeared normal in PTPMEG-KO mice. These results suggest that tyrosine dephosphorylation events regulated by PTPMEG are important for both motor learning and cerebellar synaptic plasticity.


Asunto(s)
Cerebelo/fisiología , Condicionamiento Psicológico/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Actividad Motora/fisiología , Proteínas Tirosina Fosfatasas/fisiología , Animales , Conducta Animal/fisiología , Parpadeo/fisiología , Cerebelo/citología , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica/métodos , Técnicas In Vitro , Depresión Sináptica a Largo Plazo/genética , Trastornos de la Memoria/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Neuronas/fisiología , Neuronas/efectos de la radiación , Proteínas Tirosina Fosfatasas/deficiencia , Desempeño Psicomotor , Prueba de Desempeño de Rotación con Aceleración Constante/métodos , Factores de Tiempo
17.
EMBO J ; 25(12): 2867-77, 2006 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-16710293

RESUMEN

Phosphorylation of neural proteins in response to a diverse array of external stimuli is one of the main mechanisms underlying dynamic changes in neural circuitry. The NR2B subunit of the NMDA receptor is tyrosine-phosphorylated in the brain, with Tyr-1472 its major phosphorylation site. Here, we generate mice with a knockin mutation of the Tyr-1472 site to phenylalanine (Y1472F) and show that Tyr-1472 phosphorylation is essential for fear learning and amygdaloid synaptic plasticity. The knockin mice show impaired fear-related learning and reduced amygdaloid long-term potentiation. NMDA receptor-mediated CaMKII signaling is impaired in YF/YF mice. Electron microscopic analyses reveal that the Y1472F mutant of the NR2B subunit shows improper localization at synapses in the amygdala. We thus identify Tyr-1472 phosphorylation as a key mediator of fear learning and amygdaloid synaptic plasticity.


Asunto(s)
Amígdala del Cerebelo/fisiología , Condicionamiento Clásico , Miedo/fisiología , Plasticidad Neuronal , Fosfotirosina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/ultraestructura , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Aprendizaje/fisiología , Ratones , Mutación/genética , Fosforilación , Transporte de Proteínas , Receptores de N-Metil-D-Aspartato/ultraestructura , Transmisión Sináptica , Tetania
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA