Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 580(7803): 402-408, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296183

RESUMEN

Global insights into cellular organization and genome function require comprehensive understanding of the interactome networks that mediate genotype-phenotype relationships1,2. Here we present a human 'all-by-all' reference interactome map of human binary protein interactions, or 'HuRI'. With approximately 53,000 protein-protein interactions, HuRI has approximately four times as many such interactions as there are high-quality curated interactions from small-scale studies. The integration of HuRI with genome3, transcriptome4 and proteome5 data enables cellular function to be studied within most physiological or pathological cellular contexts. We demonstrate the utility of HuRI in identifying the specific subcellular roles of protein-protein interactions. Inferred tissue-specific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms that might underlie tissue-specific phenotypes of Mendelian diseases. HuRI is a systematic proteome-wide reference that links genomic variation to phenotypic outcomes.


Asunto(s)
Proteoma/metabolismo , Espacio Extracelular/metabolismo , Humanos , Especificidad de Órganos , Mapeo de Interacción de Proteínas
2.
Mol Syst Biol ; 12(4): 863, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27107012

RESUMEN

High-throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome-scale interaction mapping. Here, we report Barcode Fusion Genetics-Yeast Two-Hybrid (BFG-Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG-Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein-pair barcodes that can be quantified via next-generation sequencing. We applied BFG-Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG-Y2H increases the efficiency of protein matrix screening, with quality that is on par with state-of-the-art Y2H methods.


Asunto(s)
Centrosoma/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Cromosomas Humanos/metabolismo , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Unión Proteica , Técnicas del Sistema de Dos Híbridos
3.
Viruses ; 16(3)2024 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-38543825

RESUMEN

Tomato Brown Rugose Fruit Virus (ToBRFV) is a plant pathogen that infects important Solanaceae crop species and can dramatically reduce tomato crop yields. The ToBRFV has rapidly spread around the globe due to its ability to escape detection by antiviral host genes which confer resistance to other tobamoviruses in tomato plants. The development of robust and reproducible methods for detecting viruses in the environment aids in the tracking and reduction of pathogen transmission. We detected ToBRFV in municipal wastewater influent (WWI) samples, likely due to its presence in human waste, demonstrating a widespread distribution of ToBRFV in WWI throughout Ontario, Canada. To aid in global ToBRFV surveillance efforts, we developed a tiled amplicon approach to sequence and track the evolution of ToBRFV genomes in municipal WWI. Our assay recovers 95.7% of the 6393 bp ToBRFV RefSeq genome, omitting the terminal 5' and 3' ends. We demonstrate that our sequencing assay is a robust, sensitive, and highly specific method for recovering ToBRFV genomes. Our ToBRFV assay was developed using existing ARTIC Network resources, including primer design, sequencing library prep, and read analysis. Additionally, we adapted our lineage abundance estimation tool, Alcov, to estimate the abundance of ToBRFV clades in samples.


Asunto(s)
Solanum lycopersicum , Tobamovirus , Purificación del Agua , Humanos , Ontario , Frutas , Tobamovirus/genética
4.
Sci Rep ; 14(1): 3728, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355869

RESUMEN

Wastewater surveillance of coronavirus disease 2019 (COVID-19) commonly applies reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentrations in wastewater over time. In most applications worldwide, maximal sensitivity and specificity of RT-qPCR has been achieved, in part, by monitoring two or more genomic loci of SARS-CoV-2. In Ontario, Canada, the provincial Wastewater Surveillance Initiative reports the average copies of the CDC N1 and N2 loci normalized to the fecal biomarker pepper mild mottle virus. In November 2021, the emergence of the Omicron variant of concern, harboring a C28311T mutation within the CDC N1 probe region, challenged the accuracy of the consensus between the RT-qPCR measurements of the N1 and N2 loci of SARS-CoV-2. In this study, we developed and applied a novel real-time dual loci quality assurance and control framework based on the relative difference between the loci measurements to the City of Ottawa dataset to identify a loss of sensitivity of the N1 assay in the period from July 10, 2022 to January 31, 2023. Further analysis via sequencing and allele-specific RT-qPCR revealed a high proportion of mutations C28312T and A28330G during the study period, both in the City of Ottawa and across the province. It is hypothesized that nucleotide mutations in the probe region, especially A28330G, led to inefficient annealing, resulting in reduction in sensitivity and accuracy of the N1 assay. This study highlights the importance of implementing quality assurance and control criteria to continually evaluate, in near real-time, the accuracy of the signal produced in wastewater surveillance applications that rely on detection of pathogens whose genomes undergo high rates of mutation.


Asunto(s)
Monitoreo Epidemiológico Basado en Aguas Residuales , Aguas Residuales , Alelos , Mutación , Ontario/epidemiología , SARS-CoV-2/genética , ARN Viral/genética
5.
Microb Genom ; 10(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38785221

RESUMEN

Wastewater-based surveillance (WBS) is an important epidemiological and public health tool for tracking pathogens across the scale of a building, neighbourhood, city, or region. WBS gained widespread adoption globally during the SARS-CoV-2 pandemic for estimating community infection levels by qPCR. Sequencing pathogen genes or genomes from wastewater adds information about pathogen genetic diversity, which can be used to identify viral lineages (including variants of concern) that are circulating in a local population. Capturing the genetic diversity by WBS sequencing is not trivial, as wastewater samples often contain a diverse mixture of viral lineages with real mutations and sequencing errors, which must be deconvoluted computationally from short sequencing reads. In this study we assess nine different computational tools that have recently been developed to address this challenge. We simulated 100 wastewater sequence samples consisting of SARS-CoV-2 BA.1, BA.2, and Delta lineages, in various mixtures, as well as a Delta-Omicron recombinant and a synthetic 'novel' lineage. Most tools performed well in identifying the true lineages present and estimating their relative abundances and were generally robust to variation in sequencing depth and read length. While many tools identified lineages present down to 1 % frequency, results were more reliable above a 5 % threshold. The presence of an unknown synthetic lineage, which represents an unclassified SARS-CoV-2 lineage, increases the error in relative abundance estimates of other lineages, but the magnitude of this effect was small for most tools. The tools also varied in how they labelled novel synthetic lineages and recombinants. While our simulated dataset represents just one of many possible use cases for these methods, we hope it helps users understand potential sources of error or bias in wastewater sequencing analysis and to appreciate the commonalities and differences across methods.


Asunto(s)
COVID-19 , Genoma Viral , SARS-CoV-2 , Aguas Residuales , Aguas Residuales/virología , SARS-CoV-2/genética , SARS-CoV-2/clasificación , COVID-19/virología , COVID-19/epidemiología , Humanos , Biología Computacional/métodos , Genómica/métodos , Monitoreo Epidemiológico Basado en Aguas Residuales , Filogenia
6.
G3 (Bethesda) ; 13(7)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37267226

RESUMEN

The COVID-19 pandemic has catalyzed unprecedented scientific data and reagent sharing and collaboration, which enabled understanding the virology of the SARS-CoV-2 virus and vaccine development at record speed. The pandemic, however, has also raised awareness of the danger posed by the family of coronaviruses, of which 7 are known to infect humans and dozens have been identified in reservoir species, such as bats, rodents, or livestock. To facilitate understanding the commonalities and specifics of coronavirus infections and aspects of viral biology that determine their level of lethality to the human host, we have generated a collection of freely available clones encoding nearly all human coronavirus proteins known to date. We hope that this flexible, Gateway-compatible vector collection will encourage further research into the interactions of coronaviruses with their human host, to increase preparedness for future zoonotic viral outbreaks.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Pandemias
7.
Nat Biotechnol ; 41(1): 140-149, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36217029

RESUMEN

Understanding the mechanisms of coronavirus disease 2019 (COVID-19) disease severity to efficiently design therapies for emerging virus variants remains an urgent challenge of the ongoing pandemic. Infection and immune reactions are mediated by direct contacts between viral molecules and the host proteome, and the vast majority of these virus-host contacts (the 'contactome') have not been identified. Here, we present a systematic contactome map of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with the human host encompassing more than 200 binary virus-host and intraviral protein-protein interactions. We find that host proteins genetically associated with comorbidities of severe illness and long COVID are enriched in SARS-CoV-2 targeted network communities. Evaluating contactome-derived hypotheses, we demonstrate that viral NSP14 activates nuclear factor κB (NF-κB)-dependent transcription, even in the presence of cytokine signaling. Moreover, for several tested host proteins, genetic knock-down substantially reduces viral replication. Additionally, we show for USP25 that this effect is phenocopied by the small-molecule inhibitor AZ1. Our results connect viral proteins to human genetic architecture for COVID-19 severity and offer potential therapeutic targets.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Proteoma/genética , Síndrome Post Agudo de COVID-19 , Replicación Viral/genética , Ubiquitina Tiolesterasa/farmacología
8.
Nat Commun ; 14(1): 2162, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061542

RESUMEN

Generating reference maps of interactome networks illuminates genetic studies by providing a protein-centric approach to finding new components of existing pathways, complexes, and processes. We apply state-of-the-art methods to identify binary protein-protein interactions (PPIs) for Drosophila melanogaster. Four all-by-all yeast two-hybrid (Y2H) screens of > 10,000 Drosophila proteins result in the 'FlyBi' dataset of 8723 PPIs among 2939 proteins. Testing subsets of data from FlyBi and previous PPI studies using an orthogonal assay allows for normalization of data quality; subsequent integration of FlyBi and previous data results in an expanded binary Drosophila reference interaction network, DroRI, comprising 17,232 interactions among 6511 proteins. We use FlyBi data to generate an autophagy network, then validate in vivo using autophagy-related assays. The deformed wings (dwg) gene encodes a protein that is both a regulator and a target of autophagy. Altogether, these resources provide a foundation for building new hypotheses regarding protein networks and function.


Asunto(s)
Proteínas de Drosophila , Mapas de Interacción de Proteínas , Animales , Mapas de Interacción de Proteínas/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mapeo de Interacción de Proteínas/métodos , Técnicas del Sistema de Dos Híbridos
9.
G3 (Bethesda) ; 10(9): 3399-3402, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32763951

RESUMEN

The world is facing a global pandemic of COVID-19 caused by the SARS-CoV-2 coronavirus. Here we describe a collection of codon-optimized coding sequences for SARS-CoV-2 cloned into Gateway-compatible entry vectors, which enable rapid transfer into a variety of expression and tagging vectors. The collection is freely available. We hope that widespread availability of this SARS-CoV-2 resource will enable many subsequent molecular studies to better understand the viral life cycle and how to block it.


Asunto(s)
Betacoronavirus/genética , Sistemas de Lectura Abierta/genética , Betacoronavirus/aislamiento & purificación , COVID-19 , Clonación Molecular , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Escherichia coli/metabolismo , Humanos , Pandemias , Plásmidos/genética , Plásmidos/metabolismo , Neumonía Viral/patología , Neumonía Viral/virología , Potyvirus/genética , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA