Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cereb Blood Flow Metab ; 20(1): 192-200, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10616808

RESUMEN

The relationship between local rates of cerebral glucose utilization (ICMRglc) and glucose transporter expression was examined during physiologic activation of the hypothalamoneurohypophysial system. Three days of water deprivation, which is known to activate the hypothalamoneurohypophysial system, resulted in increased ICMRglc and increased concentrations of GLUT1 and GLUT3 in the neurohypophysis; mRNA levels of GLUT1 and GLUT3 were decreased and increased, respectively. Water deprivation also increased ICMRglc in the hypothalamic supraoptic and paraventricular nuclei; mRNA levels of GLUT1 and GLUT3 appeared to increase in these nuclei, but the changes did not achieve statistical significance. Restoration of water for 3 to 7 days reversed all observed changes in GLUT expression (protein and mRNA): restoration of water also reversed changes in ICMRglc in both the neurohypophysis and the hypothalamic nuclei. These results indicate that under conditions of neural activation and recovery, changes in ICMRglc and the levels of GLUT1 and GLUT3 are temporally correlated in the neurohypophysis and raise the possibility that GLUT1 and GLUT3 transporter expression may be regulated by chronic changes in functional activity. In addition, increases in the expression of GLUT5 mRNA in the neurohypophysis after dehydration provide evidence for involvement of microglial activation.


Asunto(s)
Encéfalo/metabolismo , Ingestión de Líquidos/fisiología , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas del Tejido Nervioso , Privación de Agua/fisiología , Animales , Transportador de Glucosa de Tipo 1 , Transportador de Glucosa de Tipo 3 , Masculino , Proteínas de Transporte de Monosacáridos/genética , Núcleo Hipotalámico Paraventricular/metabolismo , Neurohipófisis/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Núcleo Supraóptico/metabolismo
2.
Brain Res ; 797(1): 1-11, 1998 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-9630471

RESUMEN

This study describes the regional and cellular expression of the insulin-sensitive glucose transporter, GLUT4, in rodent brain. A combination of in situ hybridization, immunohistochemistry and immunoblot techniques was employed to localize GLUT4 mRNA and protein to the granule cells of the olfactory bulb, dentate gyrus of the hippocampus and the cerebellum, with the greatest level of expression being in the cerebellum. Estimates of the concentration of GLUT4 in cerebellar membranes indicate that this transporter isoform is present in significant amounts, relative to the other isoforms, GLUT1 and GLUT3. Cerebellar GLUT4 expression was increased in the genetically diabetic, hyperinsulinemic, db/db mouse relative to the non-diabetic control, and even higher levels were observed in db/db female than db/db male mice. Levels of expression of GLUT4 protein in cerebellum appear to respond to the level of circulating insulin, and are reduced in the hypoinsulinemic streptozotocin-diabetic rat. Exercise training also results in reduced insulin levels and comparably reduced levels of GLUT4 in the cerebellum. These studies demonstrate a chronic insulin-sensitive regulation of GLUT4 in rodent brain and raise the possibility of acute modulations of glucose uptake in these GLUT4 expressing cells.


Asunto(s)
Química Encefálica/fisiología , Diabetes Mellitus Experimental/fisiopatología , Proteínas de Transporte de Monosacáridos/genética , Proteínas Musculares , Animales , Western Blotting , Cerebelo/citología , Cerebelo/metabolismo , Cerebelo/fisiopatología , Giro Dentado/citología , Giro Dentado/metabolismo , Giro Dentado/fisiopatología , Femenino , Expresión Génica/fisiología , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4 , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Obesos , Proteínas de Transporte de Monosacáridos/análisis , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/fisiopatología , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley
3.
Pharmacology ; 56(2): 101-10, 1998 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9494068

RESUMEN

The effect of continuous intracerebroventricular (i.c.v.) infusion of oxytocin (OT) on the release of OT and vasopressin (VP) following osmotic stimulation was studied in ovariectomized rats treated peripherally with gonadal steroids to simulate late gestation/lactation. Artificial cerebrospinal fluid (CSF) with or without OT (2 ng/microg) was infused (0.5 microl/h) i.c.v. continuously for 7 days along with sequential peripheral administration of progesterone (2 mg/kg i.m.) for 4 days, then 17-beta-estradiol (200 microg/kg i.m.) for 2 days. Following 7 days of OT infusion, isotonic (0.15 mol/l NaCl) or hypertonic (1.5 mol/l NaCl) saline was injected (15 ml/kg s.c.); the animals were decapitated 1 h later. Animals infused centrally with OT had higher basal levels of OT in plasma (p < 0.01 vs. CSF). While osmotic stimulation increased plasma levels of both OT and VP (0.15 mol/l NaCl < 1.5 mol/l NaCl; p < 0.01), only circulating VP was enhanced further (p < 0.01) in animals infused with OT compared with those receiving CSF. These changes in hormone levels could not be explained by differences in neural lobe stores of OT or VP or by alterations in daily water intake during the infusion period. Thus, chronic i.c.v. infusion of OT stimulates basal release of OT and increases the response of the VP system to osmotic stimulation.


Asunto(s)
Encéfalo/efectos de los fármacos , Lactancia/metabolismo , Oxitocina/administración & dosificación , Animales , Encéfalo/metabolismo , Femenino , Hematócrito , Inyecciones Intraventriculares , Concentración Osmolar , Ovariectomía , Oxitocina/sangre , Embarazo , Ratas , Ratas Wistar , Vasopresinas/sangre
4.
Am J Physiol ; 275(3): E516-24, 1998 09.
Artículo en Inglés | MEDLINE | ID: mdl-9725820

RESUMEN

Although glucose is the major metabolic fuel needed for normal brain function, monocarboxylic acids, i.e., lactate, pyruvate, and ketone bodies, can also be utilized by the brain as alternative energy substrates. In most mammalian cells, these substrates are transported either into or out of the cell by a family of monocarboxylate transporters (MCTs), first cloned and sequenced in the hamster. We have recently cloned two MCT isoforms (MCT1 and MCT2) from a mouse kidney cDNA library. Northern blot analysis revealed that MCT1 mRNA is ubiquitous and can be detected in most tissues at a relatively constant level. MCT2 expression is more limited, with high levels of expression confined to testes, kidney, stomach, and liver and lower levels in lung, brain, and epididymal fat. Both MCT1 mRNA and MCT2 mRNA are detected in mouse brain using antisense riboprobes and in situ hybridization. MCT1 mRNA is found throughout the cortex, with higher levels of hybridization in hippocampus and cerebellum. MCT2 mRNA was detected in the same areas, but the pattern of expression was more specific. In addition, MCT1 mRNA, but not MCT2, is localized to the choroid plexus, ependyma, microvessels, and white matter structures such as the corpus callosum. These results suggest a differential expression of the two MCTs at the cellular level.


Asunto(s)
Encéfalo/metabolismo , Proteínas Portadoras/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/química , Clonación Molecular , Cricetinae , Epidídimo/metabolismo , Biblioteca de Genes , Hibridación in Situ , Riñón/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Datos de Secuencia Molecular , Transportadores de Ácidos Monocarboxílicos , Especificidad de Órganos , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Testículo/metabolismo , Transcripción Genética
5.
Biochem J ; 328 ( Pt 2): 511-6, 1997 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-9371709

RESUMEN

Platelets derive most of their energy from anaerobic glycolysis; during activation this requirement rises approx. 3-fold. To accommodate the high glucose flux, platelets express extremely high concentrations (155+/-18 pmol/mg of membrane protein) of the most active glucose transporter isoform, GLUT3. Thrombin, a potent platelet activator, was found to stimulate 2-deoxyglucose transport activity 3-5-fold within 10 min at 25 degrees C, with a half-time of 1-2 min. To determine the mechanism underlying the increase in glucose transport activity, an impermeant photolabel, [2-3H]2N-4-(1-azi-2,2,2-trifluoethyl)benzoyl-1,3, -bis-(d-mannose-4-ylozy)-2-propylamine, was used to covalently bind glucose transporters accessible to the extracellular milieu. In response to thrombin, the level of transporter labelling increased 2.7-fold with a half-time of 1-2 min. This suggests a translocation of GLUT3 transporters from an intracellular site to the plasma membrane in a manner analogous to that seen for the translocation of GLUT4 in insulin-stimulated rat adipose cells. To investigate whether a similar signalling pathway was involved in both systems, platelets and adipose cells were exposed to staurosporin and wortmannin, two inhibitors of GLUT4 translocation in adipose cells. Thrombin stimulation of glucose transport activity in platelets was more sensitive to staurosporin inhibition than was insulin-stimulated transport activity in adipose cells, but it was totally insensitive to wortmannin. This indicates that the GLUT3 translocation in platelets is mediated by a protein kinase C not by a phosphatidylinositol 3-kinase mechanism. In support of this contention, the phorbol ester PMA, which specifically activates protein kinase C, fully stimulated glucose transport activity in platelets and was equally sensitive to inhibition by staurosporin. This study provides a cellular mechanism by which platelets enhance their capacity to import glucose to fulfil the increased energy demands associated with activation.


Asunto(s)
Plaquetas/metabolismo , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas del Tejido Nervioso , Propilaminas , Trombina/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Marcadores de Afinidad/metabolismo , Androstadienos/farmacología , Animales , Azidas/metabolismo , Transporte Biológico , Compartimento Celular , Membrana Celular/metabolismo , Citocalasina B/metabolismo , Desoxiglucosa/metabolismo , Disacáridos/metabolismo , Epidídimo/citología , Epidídimo/efectos de los fármacos , Epidídimo/metabolismo , Transportador de Glucosa de Tipo 3 , Glicósidos , Humanos , Insulina/farmacología , Masculino , Ratas , Estaurosporina/farmacología , Wortmanina
6.
J Neurochem ; 72(1): 238-47, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9886075

RESUMEN

The transport of glucose across the blood-brain barrier (BBB) is mediated by the high molecular mass (55-kDa) isoform of the GLUT1 glucose transporter protein. In this study we have utilized the tritiated, impermeant photolabel 2-N-[4-(1 -azi-2,2,2-trifluoroethyl)[2-3H]propyl]-1,3-bis(D-mannose-4-ylo xy)-2-propylamine to develop a technique to specifically measure the concentration of GLUT1 glucose transporters on the luminal surface of the endothelial cells of the BBB. We have combined this methodology with measurements of BBB glucose transport and immunoblot analysis of isolated brain microvessels for labeled luminal GLUT1 and total GLUT1 to reevaluate the effects of chronic hypoglycemia and diabetic hyperglycemia on transendothelial glucose transport in the rat. Hypoglycemia was induced with continuous-release insulin pellets (6 U/day) for a 12- to 14-day duration; diabetes was induced by streptozotocin (65 mg/kg i.p.) for a 14- to 21-day duration. Hypoglycemia resulted in 25-45% increases in regional BBB permeability-surface area (PA) values for D-[14C]glucose uptake, when measured at identical glucose concentration using the in situ brain perfusion technique. Similarly, there was a 23+/-4% increase in total GLUT1/mg of microvessel protein and a 52+/-13% increase in luminal GLUT1 in hypoglycemic animals, suggesting that both increased GLUT1 synthesis and a redistribution to favor luminal transporters account for the enhanced uptake. A corresponding (twofold) increase in cortical GLUT1 mRNA was observed by in situ hybridization. In contrast, no significant changes were observed in regional brain glucose uptake PA, total microvessel 55-kDa GLUT1, or luminal GLUT1 concentrations in hyperglycemic rats. There was, however, a 30-40% increase in total cortical GLUT1 mRNA expression, with a 96% increase in the microvessels. Neither condition altered the levels of GLUT3 mRNA or protein expression. These results show that hypoglycemia, but not hyperglycemia, alters glucose transport activity at the BBB and that these changes in transport activity result from both an overall increase in total BBB GLUT1 and an increased transporter concentration at the luminal surface.


Asunto(s)
Barrera Hematoencefálica/fisiología , Glucosa/metabolismo , Hiperglucemia/metabolismo , Hipoglucemia/metabolismo , Proteínas de Transporte de Monosacáridos/fisiología , Propilaminas , Marcadores de Afinidad , Animales , Azidas , Diabetes Mellitus Experimental/fisiopatología , Disacáridos , Transportador de Glucosa de Tipo 1 , Glicósidos , Hipoglucemia/inducido químicamente , Hipoglucemiantes , Insulina , Masculino , Fotoquímica , Ratas , Ratas Sprague-Dawley , Tritio
7.
J Membr Biol ; 169(1): 45-53, 1999 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-10227851

RESUMEN

Barbiturates inhibit GLUT-1-mediated glucose transport across the blood-brain barrier, in cultured mammalian cells, and in human erythrocytes. Barbiturates also interact directly with GLUT-1. The hypotheses that this inhibition of glucose transport is (i) selective, preferring barbiturates over halogenated hydrocarbon inhalation anesthetics, and (ii) specific, favoring some GLUT-# isoforms over others were tested. Several oxy- and thio-barbiturates inhibited [3H]-2-deoxyglucose uptake by GLUT-1 expressing murine fibroblasts with IC50s of 0.2-2.9 mm. Inhibition of GLUT-1 by barbiturates correlates with their overall lipid solubility and pharmacology, and requires hydrophobic side chains on the core barbiturate structure. In contrast, several halogenated hydrocarbons and ethanol (all 10 mm). Thus, barbiturates selectively inhibit glucose transport by some, but not all, facilitative glucose transporter isoforms.


Asunto(s)
Barbitúricos/farmacología , Proteínas de Transporte de Monosacáridos/metabolismo , Células 3T3 , Anestésicos/farmacología , Animales , Transporte Biológico , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1 , Halotano/metabolismo , Humanos , Hidrocarburos Halogenados/farmacología , Isoflurano/metabolismo , Ratones , Proteínas de Transporte de Monosacáridos/efectos de los fármacos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA