Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Biol Cell ; 114(7): 185-198, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35389514

RESUMEN

MAGI-1 is a critical cellular scaffolding protein with over 110 different cellular and microbial protein interactors. Since the discovery of MAGI-1 in 1997, MAGI-1 has been implicated in diverse cellular functions such as polarity, cell-cell communication, neurological processes, kidney function, and a host of diseases including cancer and microbial infection. Additionally, MAGI-1 has undergone nomenclature changes in response to the discovery of an additional PDZ domain, leading to lack of continuity in the literature. We address the nomenclature of MAGI-1 as well as summarize many of the critical functions of the known interactions. Given the importance of many of the interactors, such as human papillomavirus E6, the Coxsackievirus and adenovirus receptor (CAR), and PTEN, the enhancement or disruption of MAGI-based interactions has the potential to affect cellular functions that can potentially be harnessed as a therapeutic strategy for a variety of diseases.


Asunto(s)
Dominios PDZ , Humanos
2.
J Virol ; 95(13): e0004621, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33762416

RESUMEN

Adenoviruses (AdVs) are etiological agents of gastrointestinal, heart, eye, and respiratory tract infections that can be lethal for immunosuppressed people. Many AdVs use the coxsackievirus and adenovirus receptor (CAR) as a primary receptor. The CAR isoform resulting from alternative splicing that includes the eighth exon, CAREx8, localizes to the apical surface of polarized epithelial cells and is responsible for the initiation of AdV infection. We have shown that the membrane level of CAREx8 is tightly regulated by two MAGI-1 PDZ domains, PDZ2 and PDZ4, resulting in increased or decreased AdV transduction, respectively. We hypothesized that targeting the interactions between the MAGI-1 PDZ2 domain and CAREx8 would decrease the apical CAREx8 expression level and prevent AdV infection. Decoy peptides that target MAGI-1 PDZ2 were synthesized (TAT-E6 and TAT-NET1). PDZ2 binding peptides decreased CAREx8 expression and reduced AdV transduction. CAREx8 degradation was triggered by the activation of the regulated intramembrane proteolysis (RIP) pathway through a disintegrin and metalloproteinase (ADAM17) and γ-secretase. Further analysis revealed that ADAM17 interacts directly with the MAGI-1 PDZ3 domain, and blocking the PDZ2 domain enhanced the accessibility of ADAM17 to the substrate (CAREx8). Finally, we validated the efficacy of TAT-PDZ2 peptides in protecting the epithelia from AdV transduction in vivo using a novel transgenic animal model. Our data suggest that TAT-PDZ2 binding peptides are novel anti-AdV molecules that act by enhanced RIP of CAREx8 and decreased AdV entry. This strategy has additional translational potential for targeting other viral receptors that have PDZ binding domains, such as the angiotensin-converting enzyme 2 receptor. IMPORTANCE Adenovirus is a common threat in immunosuppressed populations and military recruits. There are no currently approved treatments/prophylactic agents that protect from most AdV infections. Here, we developed peptide-based small molecules that can suppress AdV infection of polarized epithelia by targeting the AdV receptor, coxsackievirus and adenovirus receptor (CAREx8). The newly discovered peptides target a specific PDZ domain of the CAREx8-interacting protein MAGI-1 and decrease AdV transduction in multiple polarized epithelial models. Peptide-induced CAREx8 degradation is triggered by extracellular domain (ECD) shedding through ADAM17 followed by γ-secretase-mediated nuclear translocation of the C-terminal domain. The enhanced shedding of the CAREx8 ECD further protected the epithelium from AdV infection. Taken together, these novel molecules protect the epithelium from AdV infection. This approach may be applicable to the development of novel antiviral molecules against other viruses that use a receptor with a PDZ binding domain.


Asunto(s)
Proteína ADAM17/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Infecciones por Adenoviridae/prevención & control , Moléculas de Adhesión Celular/metabolismo , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/antagonistas & inhibidores , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Guanilato-Quinasas/metabolismo , Células 3T3 , Adenoviridae/inmunología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Perros , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Ratones , Dominios Proteicos
3.
PLoS Pathog ; 16(4): e1008242, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32251490

RESUMEN

Murine norovirus (MNoV) is an important model of human norovirus (HNoV) and mucosal virus infection more broadly. Viral receptor utilization is a major determinant of cell tropism, host range, and pathogenesis. The bona fide receptor for HNoV is unknown. Recently, we identified CD300lf as a proteinaceous receptor for MNoV. Interestingly, its paralogue CD300ld was also sufficient for MNoV infection in vitro. Here we explored whether CD300lf is the sole physiologic receptor in vivo and whether HNoV can use a CD300 ortholog as an entry receptor. We report that both CD300ld and CD300lf are sufficient for infection by diverse MNoV strains in vitro. We further demonstrate that CD300lf is essential for both oral and parenteral MNoV infection and to elicit anti-MNoV humoral responses in vivo. In mice deficient in STAT1 signaling, CD300lf is required for MNoV-induced lethality. Finally, we demonstrate that human CD300lf (huCD300lf) is not essential for HNoV infection, nor does huCD300lf inhibit binding of HNoV virus-like particles to glycans. Thus, we report huCD300lf is not a receptor for HNoV.


Asunto(s)
Infecciones por Caliciviridae/virología , Especificidad del Huésped , Interacciones Huésped-Patógeno , Norovirus/metabolismo , Receptores Inmunológicos/metabolismo , Receptores Virales/metabolismo , Animales , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Norovirus/crecimiento & desarrollo , Receptores Inmunológicos/fisiología , Tropismo Viral
4.
Biochem Cell Biol ; 99(1): 166-172, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32348689

RESUMEN

Human noroviruses cause significant morbidity and mortality worldwide, but lack approved antivirals or vaccines to treat or prevent infections. The recent development of two cell culture systems in human transformed B cells (BJABs) and non-transformed human intestinal enteroid cultures overcomes a main limitation in identifying molecules with anti-norovirus activities. Lactoferrin is an iron-binding glycoprotein found in the milk of most mammals, with broad spectrum antimicrobial activities, including against the related murine norovirus in cell culture. In a Japanese clinical trial, ingestion of lactoferrin reduced the incidence of infectious gastroenteritis in the participants. Because human noroviruses were the most common cause of gastroenteritis in Japan during the clinical trial period, we sought to determine whether lactoferrin could inhibit infection with human norovirus. Our study, using a B cell culture model, demonstrates that lactoferrin reduces human norovirus infection. The mechanism of antiviral action is likely indirect and may involve the induction of innate interferon responses. Therefore, future studies are warranted to test the antiviral efficacy of lactoferrin against human norovirus infection in patients.


Asunto(s)
Antivirales/farmacología , Lactoferrina/metabolismo , Norovirus/efectos de los fármacos , Animales , Antivirales/química , Bovinos , Células Cultivadas , Humanos , Lactoferrina/química , Pruebas de Sensibilidad Microbiana , Replicación Viral/efectos de los fármacos
5.
PLoS Pathog ; 15(10): e1008057, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31671153

RESUMEN

Human astroviruses (HAstV) are understudied positive-strand RNA viruses that cause gastroenteritis mostly in children and the elderly. Three clades of astroviruses, classic, MLB-type and VA-type have been reported in humans. One limitation towards a better understanding of these viruses has been the lack of a physiologically relevant cell culture model that supports growth of all clades of HAstV. Herein, we demonstrate infection of HAstV strains belonging to all three clades in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts. A detailed investigation of infection of VA1, a member of the non-canonical HAstV-VA/HMO clade, showed robust replication in HIE derived from different patients and from different intestinal regions independent of the cellular differentiation status. Flow cytometry and immunofluorescence analysis revealed that VA1 infects several cell types, including intestinal progenitor cells and mature enterocytes, in HIE cultures. RNA profiling of VA1-infected HIE uncovered that the host response to infection is dominated by interferon (IFN)-mediated innate immune responses. A comparison of the antiviral host response in non-transformed HIE and transformed human colon carcinoma Caco-2 cells highlighted significant differences between these cells, including an increased magnitude of the response in HIE. Additional studies confirmed the sensitivity of VA1 to exogenous IFNs, and indicated that the endogenous IFN response of HIE to curtail the growth of strains from all three clades. Genotypic variation in the permissiveness of different HIE lines to HAstV could be overcome by pharmacologic inhibition of JAK/STAT signaling. Collectively, our data identify HIE as a universal infection model for HAstV and an improved model of the intestinal epithelium to investigate enteric virus-host interactions.


Asunto(s)
Infecciones por Astroviridae/inmunología , Infecciones por Astroviridae/veterinaria , Mucosa Intestinal/inmunología , Intestino Delgado/inmunología , Mamastrovirus/fisiología , Tropismo Viral/genética , Animales , Células CACO-2 , Línea Celular , Chlorocebus aethiops , Enterocitos/virología , Gastroenteritis/virología , Humanos , Inmunidad Innata/inmunología , Interferones/inmunología , Mucosa Intestinal/citología , Mucosa Intestinal/virología , Intestino Delgado/citología , Intestino Delgado/virología , Mamastrovirus/genética , Mamastrovirus/inmunología , Células Vero , Tropismo Viral/inmunología
6.
Mol Biol Evol ; 35(10): 2390-2400, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29955873

RESUMEN

Viral evolutionary pathways are determined by the fitness landscape, which maps viral genotype to fitness. However, a quantitative description of the landscape and the evolutionary forces on it remain elusive. Here, we apply a biophysical fitness model based on capsid folding stability and antibody binding affinity to predict the evolutionary pathway of norovirus escaping a neutralizing antibody. The model is validated by experimental evolution in bulk culture and in a drop-based microfluidics that propagates millions of independent small viral subpopulations. We demonstrate that along the axis of binding affinity, selection for escape variants and drift due to random mutations have the same direction, an atypical case in evolution. However, along folding stability, selection and drift are opposing forces whose balance is tuned by viral population size. Our results demonstrate that predictable epistatic tradeoffs between molecular traits of viral proteins shape viral evolution.


Asunto(s)
Afinidad de Anticuerpos , Evolución Biológica , Aptitud Genética , Modelos Genéticos , Norovirus/genética , Animales , Anticuerpos Neutralizantes , Proteínas de la Cápside/fisiología , Epistasis Genética , Ratones , Pliegue de Proteína , Estabilidad Proteica , Selección Genética
8.
J Virol ; 90(3): 1499-506, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26581993

RESUMEN

UNLABELLED: A critical early step in murine norovirus (MNV) pathogenesis is crossing the intestinal epithelial barrier to reach the target cells for replication, i.e., macrophages, dendritic cells, and B cells. Our previous work showed that MNV replication decreases in the intestines of mice conditionally depleted of microfold (M) cells. To define the importance of Peyer's patch (PP) M cells during MNV pathogenesis, we used a model of BALB/c mice deficient in recombination-activating gene 2 (Rag2) and the common gamma chain (γc) (Rag-γc(-/-)), which lack gut-associated lymphoid tissues (GALT), such as Peyer's patches, and mature GP2(+) M cells. Rag-γc(-/-) mice were infected intraperitoneally or perorally with MNV-1 or CR3 for 24 or 72 h. Although the intestinal laminae propriae of Rag-γc(-/-) mice have a higher frequency of certain MNV target cells (dendritic cells and macrophages) than those of wild-type mice and lack others (B cells), Rag-γc(-/-) and wild-type BALB/c mice showed relatively similar viral loads in the intestine following infection by the intraperitoneal route, which provides direct access to target cells. However, Rag-γc(-/-) mice were not productively infected with MNV by the oral route, in which virions must cross the intestinal epithelial barrier. These data are consistent with a model whereby PP M cells are the primary route by which MNV crosses the intestinal epithelia of BALB/c mice. IMPORTANCE: Noroviruses (NoVs) are prevalent pathogens that infect their hosts via the intestine. Identifying key factors during the initial stages of virus infection in the host may provide novel points of intervention. Microfold (M) cells, antigen-sampling cells in the intestine, were previously shown to provide a gateway for murine NoV (MNV) into the host, but the relative importance of this uptake pathway remained unknown. Here we show that the absence of gut-associated lymphoid tissues (GALT), such as Peyer's patches, which contain high numbers of mature M cells, renders BALB/c mice refractory to oral infection with MNV. These findings are consistent with the model that M cells represent the primary route by which MNV crosses the intestinal epithelial barrier and infects underlying immune cells during a productive infection.


Asunto(s)
Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/virología , Interacciones Huésped-Patógeno , Norovirus/fisiología , Ganglios Linfáticos Agregados/virología , Internalización del Virus , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Ratones Noqueados
10.
PLoS Pathog ; 11(3): e1004696, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25768646

RESUMEN

Prevention of viral-induced respiratory disease begins with an understanding of the factors that increase or decrease susceptibility to viral infection. The primary receptor for most adenoviruses is the coxsackievirus and adenovirus receptor (CAR), a cell-cell adhesion protein normally localized at the basolateral surface of polarized epithelia and involved in neutrophil transepithelial migration. Recently, an alternate isoform of CAR, CAREx8, has been identified at the apical surface of polarized airway epithelia and is implicated in viral infection from the apical surface. We hypothesized that the endogenous role of CAREx8 may be to facilitate host innate immunity. We show that IL-8, a proinflammatory cytokine and a neutrophil chemoattractant, stimulates the protein expression and apical localization of CAREx8 via activation of AKT/S6K and inhibition of GSK3ß. Apical CAREx8 tethers infiltrating neutrophils at the apical surface of a polarized epithelium. Moreover, neutrophils present on the apical-epithelial surface enhance adenovirus entry into the epithelium. These findings suggest that adenovirus evolved to co-opt an innate immune response pathway that stimulates the expression of its primary receptor, apical CAREx8, to allow the initial infection the intact epithelium. In addition, CAREx8 is a new target for the development of novel therapeutics for both respiratory inflammatory disease and adenoviral infection.


Asunto(s)
Infecciones por Adenoviridae/inmunología , Adenoviridae , Células Epiteliales/metabolismo , Inmunidad Innata/inmunología , Infecciones por Adenoviridae/metabolismo , Animales , Células Cultivadas , Epitelio/metabolismo , Humanos , Ratones , Neutrófilos/inmunología , Receptores Virales/metabolismo
11.
J Virol ; 89(15): 7722-34, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25972549

RESUMEN

UNLABELLED: Human noroviruses (HuNoVs) are positive-sense RNA viruses that can cause severe, highly infectious gastroenteritis. HuNoV outbreaks are frequently associated with recombination between circulating strains. Strain genotyping and phylogenetic analyses show that noroviruses often recombine in a highly conserved region near the junction of the viral polyprotein (open reading frame 1 [ORF1]) and capsid (ORF2) genes and occasionally within the RNA-dependent RNA polymerase (RdRP) gene. Although genotyping methods are useful for tracking changes in circulating viral populations, they report only the dominant recombinant strains and do not elucidate the frequency or range of recombination events. Furthermore, the relatively low frequency of recombination in RNA viruses has limited studies to cell culture or in vitro systems, which do not reflect the complexities and selective pressures present in an infected organism. Using two murine norovirus (MNV) strains to model coinfection, we developed a microfluidic platform to amplify, detect, and recover individual recombinants following in vitro and in vivo coinfection. One-step reverse transcriptase PCR (RT-PCR) was performed in picoliter drops with primers that identified the wild-type and recombinant progenies and scanned for recombination breakpoints at ∼1-kb intervals. We detected recombination between MNV strains at multiple loci spanning the viral protease, RdRP, and capsid ORFs and isolated individual recombinant RNA genomes that were present at a frequency of 1/300,000 or higher. This study is the first to examine norovirus recombination following coinfection of an animal and suggests that the exchange of RNA among viral genomes in an infected host occurs in multiple locations and is an important driver of genetic diversity. IMPORTANCE: RNA viruses increase diversity and escape host immune barriers by genomic recombination. Studies using a number of viral systems indicate that recombination occurs via template switching by the virus-encoded RNA-dependent RNA polymerase (RdRP). However, factors that govern the frequency and positions of recombination in an infected organism remain largely unknown. This work leverages advances in the applied physics of drop-based microfluidics to isolate and sequence rare recombinants arising from the coinfection of mice with two distinct strains of murine norovirus. This study is the first to detect and analyze norovirus recombination in an animal model.


Asunto(s)
Infecciones por Caliciviridae/virología , Norovirus/genética , Norovirus/aislamiento & purificación , Recombinación Genética , Animales , Variación Genética , Genotipo , Humanos , Ratones , Microfluídica , Datos de Secuencia Molecular , Norovirus/clasificación , Filogenia
12.
J Virol ; 88(8): 4543-57, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24501415

RESUMEN

UNLABELLED: New human norovirus strains emerge every 2 to 3 years, partly due to mutations in the viral capsid that allow escape from antibody neutralization and herd immunity. To understand how noroviruses evolve antibody resistance, we investigated the structural basis for the escape of murine norovirus (MNV) from antibody neutralization. To identify specific residues in the MNV-1 protruding (P) domain of the capsid that play a role in escape from the neutralizing monoclonal antibody (MAb) A6.2, 22 recombinant MNVs were generated with amino acid substitutions in the A'B' and E'F' loops. Six mutations in the E'F' loop (V378F, A382K, A382P, A382R, D385G, and L386F) mediated escape from MAb A6.2 neutralization. To elucidate underlying structural mechanisms for these results, the atomic structure of the A6.2 Fab was determined and fitted into the previously generated pseudoatomic model of the A6.2 Fab/MNV-1 virion complex. Previously, two distinct conformations, A and B, of the atomic structures of the MNV-1 P domain were identified due to flexibility in the two P domain loops. A superior stereochemical fit of the A6.2 Fab to the A conformation of the MNV P domain was observed. Structural analysis of our observed escape mutants indicates changes toward the less-preferred B conformation of the P domain. The shift in the structural equilibrium of the P domain toward the conformation with poor structural complementarity to the antibody strongly supports a unique mechanism for antibody escape that occurs via antigen flexibility instead of direct antibody-antigen binding. IMPORTANCE: Human noroviruses cause the majority of all nonbacterial gastroenteritis worldwide. New epidemic strains arise in part by mutations in the viral capsid leading to escape from antibody neutralization. Herein, we identify a series of point mutations in a norovirus capsid that mediate escape from antibody neutralization and determine the structure of a neutralizing antibody. Fitting of the antibody structure into the virion/antibody complex identifies two conformations of the antibody binding domain of the viral capsid: one with a superior fit and the other with an inferior fit to the antibody. These data suggest a unique mode of antibody neutralization. In contrast to other viruses that largely escape antibody neutralization through direct disruption of the antibody-virus interface, we identify mutations that acted indirectly by limiting the conformation of the antibody binding loop in the viral capsid and drive the antibody binding domain into the conformation unable to be bound by the antibody.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Caliciviridae/inmunología , Proteínas de la Cápside/química , Proteínas de la Cápside/inmunología , Norovirus/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Infecciones por Caliciviridae/virología , Proteínas de la Cápside/genética , Línea Celular , Humanos , Evasión Inmune , Ratones , Ratones Noqueados , Pruebas de Neutralización , Norovirus/química , Norovirus/genética
13.
Arch Virol ; 160(9): 2353-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26112762

RESUMEN

Drug repurposing is a strategy employed to circumvent some of the bottlenecks involved in drug development, such as the cost and time needed for developing new molecular entities. Noroviruses cause recurrent epidemics and sporadic outbreaks of gastroenteritis associated with significant mortality and economic costs, but no treatment has been approved to date. Herein, a library of molecules previously used in humans was screened to find compounds with anti-noroviral activity. Antiviral testing for four selected compounds against murine norovirus infection revealed that rutin has anti-murine norovirus activity in cell-based assays.


Asunto(s)
Antivirales/farmacología , Reposicionamiento de Medicamentos , Norovirus/efectos de los fármacos , Norovirus/fisiología , Rutina/farmacología , Animales , Línea Celular , Supervivencia Celular , Macrófagos/fisiología , Macrófagos/virología , Ratones , Replicación Viral/efectos de los fármacos
14.
J Gen Virol ; 95(Pt 9): 1958-1968, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24899153

RESUMEN

Here, we report the isolation and functional characterization of mAbs against two murine norovirus (MNV) strains, MNV-1 and WU20, which were isolated following oral infection of mice. The mAbs were screened for reactivity against the respective homologous and heterologous MNV strain by ELISA. Selected mAbs were of IgA, IgG1, IgG2a or IgG2b isotype and showed a range of Western blot reactivities from non-binding to strong binding, suggesting recognition of conformational and linear epitopes. Some of the anti-MNV-1 antibodies neutralized both MNV-1 and WU20 infections in culture and in mice, but none of the anti-WU20 mAbs neutralized either virus. The non-neutralizing anti-MNV-1 IgG2b antibody 5C4.10 was mapped to the S domain of the MNV-1 capsid, whilst the epitopes of the neutralizing anti-MNV-1 IgA antibodies 2D3.7 and 4F9.4 were mapped to the P domain. Generation of neutralization escape viruses showed that two mutations (V339I and D348E) in the C'D' loop of the MNV-1 P domain mediated escape from mAb 2D3.7 and 4F9.4 neutralization. These findings broaden the known neutralizing epitopes of MNV to the main surface-exposed loops of the P domain. In addition, the current panel of antibodies provides valuable reagents for studying norovirus biology and development of diagnostic tools.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/inmunología , Norovirus/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Neutralizantes/genética , Especificidad de Anticuerpos , Infecciones por Caliciviridae/inmunología , Cápside/inmunología , Línea Celular , Epítopos/inmunología , Células HEK293 , Humanos , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Macrófagos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Pruebas de Neutralización , Norovirus/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Carga Viral
15.
Biochem Biophys Res Commun ; 425(1): 13-8, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22809504

RESUMEN

We have previously shown that the Coxsackievirus and adenovirus receptor (CAR) can interact with post-synaptic density 95 (PSD-95) and localize PSD-95 to cell-cell junctions. We have also shown that activity of the acid sensing ion channel (ASIC3), a H(+)-gated cation channel that plays a role in mechanosensation and pain signaling, is negatively modulated by PSD-95 through a PDZ-based interaction. We asked whether CAR and ASIC3 simultaneously interact with PSD-95, and if so, whether co-expression of these proteins alters their cellular distribution and localization. Results indicate that CAR and ASIC3 co-immunoprecipitate only when co-expressed with PSD-95. CAR also brings both PSD-95 and ASIC3 to the junctions of heterologous cells. Moreover, CAR rescues PSD-95-mediated inhibition of ASIC3 currents. These data suggest that, in addition to activity as a viral receptor and adhesion molecule, CAR can play a role in trafficking proteins, including ion channels, in a PDZ-based scaffolding complex.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Canales Iónicos Sensibles al Ácido/genética , Animales , Células COS , Chlorocebus aethiops , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/genética , Homólogo 4 de la Proteína Discs Large , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Dominios PDZ , Transporte de Proteínas
16.
Pathogens ; 11(2)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35215116

RESUMEN

The coxsackievirus and adenovirus receptor (CAR) is an essential cellular protein that is involved in cell adhesion, cell signaling, and viral infection. The 8-exon encoded isoform (CAREx8) resides at the apical surface of polarized epithelia, where it is accessible as a receptor for adenovirus entering the airway lumen. Given its pivotal role in viral infection, it is a target for antiviral strategies. To understand the regulation of CAREx8 and determine the feasibility of receptor downregulation, the half-life of total and apical localized CAREx8 was determined and correlated with adenovirus transduction. Total and apical CAREx8 has a relatively short half-life of approximately 2 h. The half-life of apical CAREx8 correlates well with adenovirus transduction. These results suggest that antiviral strategies that aim to degrade the primary receptor for apical adenovirus infection will be effective within a relatively short time frame after application.

17.
mBio ; 13(2): e0017522, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35404121

RESUMEN

Human norovirus (HNoV) is a global health and socioeconomic burden, estimated to infect every individual at least five times during their lifetime. The underlying mechanism for the potential lack of long-term immune protection from HNoV infections is not understood and prompted us to investigate HNoV susceptibility of primary human B cells and its functional impact. Primary B cells isolated from whole blood were infected with HNoV-positive stool samples and harvested at 3 days postinfection (dpi) to assess the viral RNA yield by reverse transcriptase quantitative PCR (RT-qPCR). A 3- to 18-fold increase in the HNoV RNA yield was observed in 50 to 60% of donors. Infection was further confirmed in B cells derived from splenic and lymph node biopsy specimens. Next, we characterized infection of whole-blood-derived B cells by flow cytometry in specific functional B cell subsets (naive CD27- IgD+, memory-switched CD27+ IgD-, memory-unswitched CD27+ IgD+, and double-negative CD27- IgD- cells). While the susceptibilities of the subsets were similar, changes in the B cell subset distribution upon infection were observed, which were also noted after treatment with HNoV virus-like particles and the predicted recombinant NS1 protein. Importantly, primary B cell stimulation with the predicted recombinant NS1 protein triggered B cell activation and induced metabolic changes. These data demonstrate that primary B cells are susceptible to HNoV infection and suggest that the NS1 protein can alter B cell activation and metabolism in vitro, which could have implications for viral pathogenesis and immune responses in vivo. IMPORTANCE Human norovirus (HNoV) is the most prevalent causative agent of gastroenteritis worldwide. Infection results in a self-limiting disease that can become chronic and severe in the immunocompromised, the elderly, and infants. There are currently no approved therapeutic and preventative strategies to limit the health and socioeconomic burdens associated with HNoV infections. Moreover, HNoV does not elicit lifelong immunity as repeat infections are common, presenting a challenge for vaccine development. Given the importance of B cells for humoral immunity, we investigated the susceptibility and impact of HNoV infection on human B cells. We found that HNoV replicates in human primary B cells derived from blood, spleen, and lymph node specimens, while the nonstructural protein NS1 can activate B cells. Because of the secreted nature of NS1, we put forward the hypothesis that HNoV infection can modulate bystander B cell function with potential impacts on systemic immune responses.


Asunto(s)
Infecciones por Caliciviridae , Gastroenteritis , Norovirus , Anciano , Humanos , Inmunoglobulina D , Activación de Linfocitos , Norovirus/fisiología
18.
Viruses ; 14(1)2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-35062217

RESUMEN

Human adenoviruses (HAdV) cause a variety of infections in human hosts, from self-limited upper respiratory tract infections in otherwise healthy people to fulminant pneumonia and death in immunocompromised patients. Many HAdV enter polarized epithelial cells by using the primary receptor, the Coxsackievirus and adenovirus receptor (CAR). Recently published data demonstrate that a potent neutrophil (PMN) chemoattractant, interleukin-8 (IL-8), stimulates airway epithelial cells to increase expression of the apical isoform of CAR (CAREx8), which results in increased epithelial HAdV type 5 (HAdV5) infection. However, the mechanism for PMN-enhanced epithelial HAdV5 transduction remains unclear. In this manuscript, the molecular mechanisms behind PMN mediated enhancement of epithelial HAdV5 transduction are characterized using an MDCK cell line that stably expresses human CAREx8 under a doxycycline inducible promoter (MDCK-CAREx8 cells). Contrary to our hypothesis, PMN exposure does not enhance HAdV5 entry by increasing CAREx8 expression nor through activation of non-specific epithelial endocytic pathways. Instead, PMN serine proteases are responsible for PMN-mediated enhancement of HAdV5 transduction in MDCK-CAREx8 cells. This is evidenced by reduced transduction upon inhibition of PMN serine proteases and increased transduction upon exposure to exogenous human neutrophil elastase (HNE). Furthermore, HNE exposure activates epithelial autophagic flux, which, even when triggered through other mechanisms, results in a similar enhancement of epithelial HAdV5 transduction. Inhibition of F-actin with cytochalasin D partially attenuates PMN mediated enhancement of HAdV transduction. Taken together, these findings suggest that HAdV5 can leverage innate immune responses to establish infections.


Asunto(s)
Adenovirus Humanos/patogenicidad , Células Epiteliales/virología , Elastasa de Leucocito/metabolismo , Neutrófilos/inmunología , Internalización del Virus , Adenovirus Humanos/inmunología , Adenovirus Humanos/fisiología , Animales , Autofagia , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Citocalasina B/farmacología , Perros , Endocitosis , Humanos , Inmunidad Innata , Macrólidos/farmacología , Células de Riñón Canino Madin Darby , Receptores Virales/metabolismo
19.
Bio Protoc ; 10(14): e3687, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-33659357

RESUMEN

Human astroviruses (HAstV) are non-enveloped, positive-sense single stranded RNA viruses that typically cause gastroenteritis in children, the elderly and among immunocompromised individuals. Some HAstV species have also been implicated in neurological diseases. It is important to study these viruses to understand the pathogenesis and develop therapeutics. Here we describe HAstV infection in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts. Although different HAstV clades have been propagated in transformed immortalized cell lines such as A549, Caco-2, HEK293T and Huh7.5, we chose HIE because they better mimic the human intestine and thus are more physiologically relevant. Additionally, HIE support the replication of all HAstV clades including clinical samples, thus making HIE a valuable potential universal model to study HAstV biology.

20.
MethodsX ; 7: 101149, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304833

RESUMEN

CRISPR-Cas9 gene editing has made it possible to specifically edit genes in a myriad of target cells. Here, a method for isoform-specific editing and clonal selection in Madin-Darby canine kidney (MDCK) epithelial cells is described in detail. This approach was used to address a long-standing question in virology of how adenovirus enters polarized epithelia from the apical surface. Our method relies on selecting two sgRNA sequences, cloning them into a suitable fluorescently labeled Cas9 vector system, and subsequently transfecting our MDCK epithelium and selecting isoform-specific Coxsackievirus and adenovirus receptor knockout clones. Utilization of this method is readily applicable to many other genetic targets in epithelial cells.•Simultaneous utilization of an sgRNA upstream and an sgRNA downstream of a target sequence allows for deletion of the intervening sequence, including whole exons.•Sorting of cells positive for fluorescent marker gene expression enhances the identification of partial and biallelic gene knockout.•PCR screening allows relatively fast and efficient determination of isoform-specific deletion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA