Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Rev Sci Instrum ; 83(10): 10D724, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126898

RESUMEN

The first detector prototypes for the ITER bolometer diagnostic featuring a 12.5 µm thick Pt-absorber have been realized and characterized in laboratory tests. The results show linear dependencies of the calibration parameters and are in line with measurements of prototypes with thinner absorbers. However, thermal cycling tests up to 450 °C of the prototypes with thick absorbers demonstrated that their reliability at these elevated operating temperatures is not yet sufficient. Profilometer measurements showed a deflection of the membrane hinting to stresses due to the deposition processes of the absorber. Finite element analysis (FEA) managed to reproduce the deflection and identified the highest stresses in the membrane in the region around the corners of the absorber. FEA was further used to identify changes in the geometry of the absorber with a positive impact on the intrinsic stresses of the membrane. However, further improvements are still necessary.

2.
Rev Sci Instrum ; 81(10): 10E132, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21061487

RESUMEN

Any plasma diagnostic in ITER must be able to operate at temperatures in excess of 200 °C and neutron loads corresponding to 0.1 dpa over its lifetime. To achieve this aim for the bolometer diagnostic, a miniaturized metal resistor bolometer detector based on Pt absorbers galvanically deposited on SiN membranes is being developed. The first two generations of detectors featured up to 4.5 µm thick absorbers. Results from laboratory tests are presented characterizing the dependence of their calibration constants under thermal loads up to 450 °C. Several detectors have been tested in ASDEX Upgrade providing reliable data but also pointing out the need for further optimization. A laser trimming procedure has been implemented to reduce the mismatch in meander resistances below 1% for one detector and the thermal drifts from this mismatch.

3.
Phys Rev Lett ; 98(15): 157002, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17501373

RESUMEN

We use microprobe angle-resolved photoemission spectroscopy (microARPES) to separately investigate the electronic properties of CuO2 planes and CuO chains in the high temperature superconductor, YBa2Cu4O8. For the CuO2 planes, a two-dimensional (2D) electronic structure is observed and, in contrast to Bi2Sr2CaCu2O8+delta, the bilayer splitting is almost isotropic and 50% larger, which strongly suggests that bilayer splitting has no direct effect on the superconducting properties. In addition, the scattering rate for the bonding band is about 1.5 times stronger than the antibonding band and is independent of momentum. For the CuO chains, the electronic structure is quasi-one-dimensional and consists of a conduction and insulating band. Finally, we find that the conduction electrons are well confined within the planes and chains with a nontrivial hybridization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA