Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 172(2): 668-689, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27208254

RESUMEN

Climate change has increased the frequency and severity of flooding events, with significant negative impact on agricultural productivity. These events often submerge plant aerial organs and roots, limiting growth and survival due to a severe reduction in light reactions and gas exchange necessary for photosynthesis and respiration, respectively. To distinguish molecular responses to the compound stress imposed by submergence, we investigated transcriptomic adjustments to darkness in air and under submerged conditions using eight Arabidopsis (Arabidopsis thaliana) accessions differing significantly in sensitivity to submergence. Evaluation of root and rosette transcriptomes revealed an early transcriptional and posttranscriptional response signature that was conserved primarily across genotypes, although flooding susceptibility-associated and genotype-specific responses also were uncovered. Posttranscriptional regulation encompassed darkness- and submergence-induced alternative splicing of transcripts from pathways involved in the alternative mobilization of energy reserves. The organ-specific transcriptome adjustments reflected the distinct physiological status of roots and shoots. Root-specific transcriptome changes included marked up-regulation of chloroplast-encoded photosynthesis and redox-related genes, whereas those of the rosette were related to the regulation of development and growth processes. We identified a novel set of tolerance genes, recognized mainly by quantitative differences. These included a transcriptome signature of more pronounced gluconeogenesis in tolerant accessions, a response that included stress-induced alternative splicing. This study provides organ-specific molecular resolution of genetic variation in submergence responses involving interactions between darkness and low-oxygen constraints of flooding stress and demonstrates that early transcriptome plasticity, including alternative splicing, is associated with the ability to cope with a compound environmental stress.


Asunto(s)
Arabidopsis/genética , Inundaciones , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Transcriptoma , Adaptación Fisiológica/genética , Adaptación Fisiológica/efectos de la radiación , Arabidopsis/clasificación , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Ontología de Genes , Genotipo , Especificidad de Órganos/genética , Fotosíntesis/genética , Raíces de Plantas/genética , Brotes de la Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Especificidad de la Especie , Estrés Fisiológico , Agua/metabolismo
2.
Dev Biol ; 379(1): 28-37, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23506837

RESUMEN

TBP-Associated Factors (TAFs) are components of complexes like TFIID, TFTC, SAGA/STAGA and SMAT that are important for the activation of transcription, either by establishing the basic transcription machinery or by facilitating histone acetylation. However, in Drosophila embryos several TAFs were shown to be associated with the Polycomb Repressive Complex 1 (PRC1), even though the role of this interaction remains unclear. Here we show that in Arabidopsis TAF13 interacts with MEDEA and SWINGER, both members of a plant variant of Polycomb Repressive Complex 2 (PRC2). PRC2 variants play important roles during the plant life cycle, including seed development. The taf13 mutation causes seed defects, showing embryo arrest at the 8-16 cell stage and over-proliferation of the endosperm in the chalazal region, which is typical for Arabidopsis PRC2 mutants. Our data suggest that TAF13 functions together with PRC2 in transcriptional regulation during seed development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Regulación de la Expresión Génica de las Plantas , Proteínas Represoras/metabolismo , Semillas/crecimiento & desarrollo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proliferación Celular , Genes de Plantas , Prueba de Complementación Genética , Mutación , Complejo Represivo Polycomb 2 , Mapeo de Interacción de Proteínas , Proteínas Represoras/genética , Semillas/genética , Semillas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
3.
Plant Cell Environ ; 37(10): 2421-32, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24548060

RESUMEN

Flooding events negatively affect plant performance and survival. Flooding gradients thereby determine the dynamics in vegetation composition and species abundance. In adaptation to flooding, the group VII Ethylene Response Factor genes (ERF-VIIs) play pivotal roles in rice and Arabidopsis through regulation of anaerobic gene expression and antithetical survival strategies. We investigated if ERF-VIIs have a similar role in mediating survival strategies in eudicot species from flood-prone environments. Here, we studied the evolutionary origin and regulation of ERF-VII transcript abundance and the physiological responses in species from two genera of divergent taxonomic lineages (Rumex and Rorippa). Synteny analysis revealed that angiosperm ERF-VIIs arose from two ancestral loci and that subsequent diversification and duplication led to the present ERF-VII variation. We propose that subtle variation in the regulation of ERF-VII transcript abundance could explain variation in tolerance among Rorippa species. In Rumex, the main difference in flood tolerance correlated with the genetic variation in ERF-VII genes. Large transcriptional differences were found by comparing the two genera: darkness and dark submergence-induced Rumex ERF-VIIs, whereas HRE2 expression was increased in submerged Rorippa roots. We conclude that the involvement of ERF-VIIs in flooding tolerance developed in a phylogenetic-dependent manner, with subtle variations within taxonomic clades.


Asunto(s)
Brassicaceae/genética , Etilenos/metabolismo , Oxígeno/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Rumex/genética , Secuencias de Aminoácidos , Brassicaceae/fisiología , Carbohidratos/análisis , Secuencia Conservada , Oscuridad , Evolución Molecular , Duplicación de Gen , Variación Genética , Magnoliopsida/genética , Magnoliopsida/fisiología , Filogenia , Proteínas de Plantas/metabolismo , Rumex/fisiología , Sintenía , Agua/fisiología , Humedales
4.
Plant Mol Biol ; 81(1-2): 71-92, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23114999

RESUMEN

Fructans represent the major component of water soluble carbohydrates (WSCs) in the maturing stem of temperate cereals and are an important temporary carbon reserve for grain filling. To investigate the importance of source carbon availability in fructan accumulation and its molecular basis, we performed comparative analyses of WSC components and the expression profiles of genes involved in major carbohydrate metabolism and photosynthesis in the flag leaves of recombinant inbred lines from wheat cultivars Seri M82 and Babax (SB lines). High sucrose levels in the mature flag leaf (source organ) were found to be positively associated with WSC and fructan concentrations in both the leaf and stem of SB lines in several field trials. Analysis of Affymetrix expression array data revealed that high leaf sucrose lines grown in abiotic-stress-prone environments had high expression levels of a number of genes in the leaf involved in the sucrose synthetic pathway and photosynthesis, such as Calvin cycle genes, antioxidant genes involved in chloroplast H(2)O(2) removal and genes involved in energy dissipation. The expression of the majority of genes involved in fructan and starch synthetic pathways were positively correlated with sucrose levels in the leaves of SB lines. The high level of leaf fructans in high leaf sucrose lines is likely attributed to the elevated expression levels of fructan synthetic enzymes, as the mRNA levels of three fructosyltransferase families were consistently correlated with leaf sucrose levels among SB lines. These data suggest that high source strength is one of the important genetic factors determining high levels of WSC in wheat.


Asunto(s)
Fructanos/metabolismo , Triticum/genética , Triticum/metabolismo , Adenosina Trifosfato/biosíntesis , Antioxidantes/metabolismo , Metabolismo de los Hidratos de Carbono , Cloroplastos/metabolismo , Genes de Plantas , Variación Genética , Genotipo , Peróxido de Hidrógeno/metabolismo , Redes y Vías Metabólicas , Modelos Biológicos , Fotosíntesis/genética , Hojas de la Planta/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Solubilidad , Almidón/biosíntesis , Sacarosa/metabolismo , Transcriptoma
5.
J Exp Bot ; 64(12): 3681-96, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23873993

RESUMEN

Fructans are the major component of temporary carbon reserve in the stem of temperate cereals, which is used for grain filling. Three families of fructosyltransferases are directly involved in fructan synthesis in the vacuole of Triticum aestivum. The regulatory network of the fructan synthetic pathway is largely unknown. Recently, a sucrose-upregulated wheat MYB transcription factor (TaMYB13-1) was shown to be capable of activating the promoter activities of sucrose:sucrose 1-fructosyltransferase (1-SST) and sucrose:fructan 6-fructosyltransferase (6-SFT) in transient transactivation assays. This work investigated TaMYB13-1 target genes and their influence on fructan synthesis in transgenic wheat. TaMYB13-1 overexpression resulted in upregulation of all three families of fructosyltransferases including fructan:fructan 1-fructosyltransferase (1-FFT). A γ-vacuolar processing enzyme (γ-VPE1), potentially involved in processing the maturation of fructosyltransferases in the vacuole, was also upregulated by TaMYB13-1 overexpression. Multiple TaMYB13 DNA-binding motifs were identified in the Ta1-FFT1 and Taγ-VPE1 promoters and were bound strongly by TaMYB13-1. The expression profiles of these target genes and TaMYB13-1 were highly correlated in recombinant inbred lines and during stem development as well as the transgenic and non-transgenic wheat dataset, further supporting a direct regulation of these genes by TaMYB13-1. TaMYB13-1 overexpression in wheat led to enhanced fructan accumulation in the leaves and stems and also increased spike weight and grain weight per spike in transgenic plants under water-limited conditions. These data suggest that TaMYB13-1 plays an important role in coordinated upregulation of genes necessary for fructan synthesis and can be used as a molecular tool to improve the high fructan trait.


Asunto(s)
Fructanos/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Factores de Transcripción/genética , Triticum/genética , Fructanos/metabolismo , Estudio de Asociación del Genoma Completo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo , Transcriptoma , Triticum/enzimología , Regulación hacia Arriba
6.
Plant J ; 68(5): 857-70, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21838777

RESUMEN

Fructans are soluble fructosyl-oligosaccharides deposited in many cool-season grass species as a carbon reserve; they are synthesised by fructosyltransferases. In wheat and barley fructans can accumulate in mature stems at a very high level and serve as an important carbon source for grain filling. Fructan synthesis in temperate cereals is regulated by sucrose level and developmental signals, and functions as a metabolic adjustment for carbon balance between carbon supply and sink demand. In this study the expression levels of a highly homologous group of Triticum aestivumMYB genes (TaMYB13-1, TaMYB13-2 and TaMYB13-3) were found to be positively correlated with the mRNA levels of sucrose:sucrose 1-fructosyltransferase (1-SST) and sucrose:fructan 6-fructosyltransferase (6-SFT) in wheat stems among recombinant inbred lines with a wide range of fructan concentrations through Affymetrix array expression analysis. This expression correction extended to expression profiles during stem development. TaMYB13 contains an R2R3-type MYB domain. In vitro random DNA-binding site selection followed by base substitution mutagenesis revealed that TaMYB13 bound to a (A/G/T)TT(A/T/C)GGT core sequence, which was present in the promoters of wheat Ta1-SST and Ta6-SFT genes as well as a barley Hv6-SFT gene. Transactivation analysis showed that TaMYB13 was a transcriptional activator and could markedly enhance the expression of 1-SST and 6-SFT promoter-driven reporter genes in wheat. Elimination of TaMYB13-binding sites in Ta6-SFT and Ta1-SST promoters markedly reduced TaMYB13-mediated reporter gene transactivation. These data suggest that TaMYB13 and its orthologues are positive regulators for controlling the expression of major fructosyltransferases involved in the fructan synthetic pathway in temperate cereals.


Asunto(s)
Fructanos/biosíntesis , Hexosiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Activación Transcripcional , Triticum/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Fructanos/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Reporteros , Hexosiltransferasas/genética , Endogamia , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Proteínas de Plantas/genética , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrollo , Alineación de Secuencia , Solubilidad , Especificidad por Sustrato , Sacarosa/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/efectos de los fármacos , Triticum/genética , Triticum/crecimiento & desarrollo
7.
Plant J ; 66(6): 1020-31, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21435046

RESUMEN

The BASIC PENTACYSTEINE (BPC) proteins are a plant-specific transcription factor family that is present throughout land plants. The Arabidopsis BPC proteins have been categorized into three classes based on sequence similarity, and we demonstrate that there is functional overlap between classes. Single gene mutations produce no visible phenotypic effects, and severe morphological phenotypes occur only in higher order mutants between members of classes I and II, with the most severe phenotype observed in bpc1-1 bpc2 bpc4 bpc6 plants. These quadruple mutants are dwarfed and display small curled leaves, aberrant ovules, altered epidermal cells and reduced numbers of lateral roots. Affected processes include coordinated growth of cell layers, cell shape determination and timing of senescence. Disruption of BPC3 function rescues some aspects of the bpc1-1 bpc2 bpc4 bpc6 phenotype, indicating that BPC3 function may be antagonistic to other members of the family. Ethylene response is diminished in bpc1-1 bpc2 bpc4 bpc6 plants, although not all aspects of the phenotype can be explained by reduced ethylene sensitivity. Our data indicate that the BPC transcription factor family is integral for a wide range of processes that support normal growth and development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Familia de Multigenes , Factores de Transcripción/metabolismo , Alelos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Clonación Molecular , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Pleiotropía Genética , Hipocótilo/crecimiento & desarrollo , Inflorescencia/crecimiento & desarrollo , Mutagénesis Insercional , Óvulo Vegetal/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/ultraestructura , Raíces de Plantas/crecimiento & desarrollo , Mutación Puntual , Regiones Promotoras Genéticas , Seudogenes , Factores de Transcripción/genética
8.
Plant Biotechnol J ; 9(6): 684-92, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20955179

RESUMEN

Since decades, plant male sterility is considered a powerful tool for biological containment to minimize unwanted self-pollination for hybrid seed production. Furthermore, prevention of pollen dispersal also answers to concerns regarding transgene flow via pollen from Genetically Modified (GM) crops to traditional crop fields or wild relatives. We induced male sterility by suppressing endogenous general transcription factor genes, TAFs, using anther-specific promoters combined with artificial microRNA (amiRNA) technology (Schwab et al., 2006). The system was made reversible by the ethanol inducible expression of an amiRNA-insensitive form of the target gene. We provide proof of concept in eggplant, a cultivated crop belonging to the Solanaceae family that includes many important food crops. The transgenic eggplants that we generated are completely male sterile and fertility can be fully restored by short treatments with ethanol, confirming the efficiency but also the reliability of the system in view of open field cultivation. By combining this system with induced parthenocarpy (Rotino et al., 1997), we provide a novel example of complete transgene containment in eggplant, which enables biological mitigation measures for the benefit of coexistence or biosafety purposes for GM crop cultivation.


Asunto(s)
Infertilidad Vegetal/genética , Solanum melongena/fisiología , Factores de Transcripción/genética , Productos Agrícolas/genética , Etanol/farmacología , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Plantas Modificadas Genéticamente/fisiología , Regiones Promotoras Genéticas , Solanum melongena/efectos de los fármacos , Solanum melongena/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factores de Transcripción/metabolismo , Transgenes
9.
Plant Physiol ; 152(3): 1320-34, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20032077

RESUMEN

Bromodomain and Extra Terminal domain (BET) proteins are characterized by the presence of two types of domains, the bromodomain and the extra terminal domain. They bind to acetylated lysines present on histone tails and control gene transcription. They are also well known to play an important role in cell cycle regulation. In Arabidopsis (Arabidopsis thaliana), there are 12 BET genes; however, only two of them, IMBIBITION INDUCIBLE1 and GENERAL TRANSCRIPTION FACTOR GROUP E6 (GTE6), were functionally analyzed. We characterized GTE4 and show that gte4 mutant plants have some characteristic features of cell cycle mutants. Their size is reduced, and they have jagged leaves and a reduced number of cells in most organs. Moreover, cell size is considerably increased in the root, and, interestingly, the root quiescent center identity seems to be partially lost. Cell cycle analyses revealed that there is a delay in activation of the cell cycle during germination and a premature arrest of cell proliferation, with a switch from mitosis to endocycling, leading to a statistically significant increase in ploidy levels in the differentiated organs of gte4 plants. Our results point to a role of GTE4 in cell cycle regulation and specifically in the maintenance of the mitotic cell cycle.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Mitosis , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferación Celular , Tamaño de la Célula , ADN Bacteriano/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Germinación , Mutagénesis Insercional , Mutación , Filogenia , Raíces de Plantas/citología , ARN de Planta/genética , Factores de Transcripción/genética
10.
Methods Mol Biol ; 1099: 29-40, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24243194

RESUMEN

The construction of full-length cDNA libraries allows researchers to study gene expression and protein interactions and undertake gene discovery. Recent improvements allow the construction of high-quality cDNA libraries, with small amounts of mRNA. In parallel, these improvements allow for the incorporation of adapters into the cDNA, both at the 5' and 3' end of the cDNA. The 3' adapter is attached to the oligo-dT primer that is used by the reverse transcriptase, whereas the 5' adapter is incorporated by the template switching properties of the MMLV reverse transcriptase. This allows directional cloning and eliminates inefficient steps like adapter ligation, phosphorylation, and methylation. Another important step in the construction of high-quality cDNA libraries is the normalization. The difference in the levels of expression between genes might be several orders of magnitude. Therefore, it is essential that the cDNA library is normalized. With a recently discovered enzyme, duplex-specific nuclease, it is possible to normalize the cDNA library, based on the fact that more abundant molecules are more likely to reanneal after denaturation compared to rare molecules.


Asunto(s)
ADN Complementario , Biblioteca de Genes , Biología Molecular/métodos
11.
Plant Cell ; 17(3): 722-9, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15722463

RESUMEN

The mechanisms for the regulation of homeotic genes are poorly understood in most organisms, including plants. We identified BASIC PENTACYSTEINE1 (BPC1) as a regulator of the homeotic Arabidopsis thaliana gene SEEDSTICK (STK), which controls ovule identity, and characterized its mechanism of action. A combination of tethered particle motion analysis and electromobility shift assays revealed that BPC1 is able to induce conformational changes by cooperative binding to purine-rich elements present in the STK regulatory sequence. Analysis of STK expression in the bpc1 mutant showed that STK is upregulated. Our results give insight into the regulation of gene expression in plants and provide the basis for further studies to understand the mechanisms that control ovule identity in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Dominio MADS/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Sitios de Unión/genética , ADN de Plantas/química , ADN de Plantas/genética , ADN de Plantas/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Genes Homeobox , Genes de Plantas , Genes Reguladores , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Plantas Modificadas Genéticamente , Unión Proteica
12.
Plant Cell ; 17(5): 1424-33, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15805477

RESUMEN

Interactions between proteins are essential for their functioning and the biological processes they control. The elucidation of interaction maps based on yeast studies is a first step toward the understanding of molecular networks and provides a framework of proteins that possess the capacity and specificity to interact. Here, we present a comprehensive plant protein-protein interactome map of nearly all members of the Arabidopsis thaliana MADS box transcription factor family. A matrix-based yeast two-hybrid screen of >100 members of this family revealed a collection of specific heterodimers and a few homodimers. Clustering of proteins with similar interaction patterns pinpoints proteins involved in the same developmental program and provides valuable information about the participation of uncharacterized proteins in these programs. Furthermore, a model is proposed that integrates the floral induction and floral organ formation networks based on the interactions between the proteins involved. Heterodimers between flower induction and floral organ identity proteins were observed, which point to (auto)regulatory mechanisms that prevent the activity of flower induction proteins in the flower.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Mapeo Cromosómico/métodos , Dimerización , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta , Proteínas de Dominio MADS/genética , Sustancias Macromoleculares , Filogenia , Proteómica , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
13.
Plant Cell ; 15(11): 2603-11, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14555696

RESUMEN

The AGAMOUS (AG) gene is necessary for stamen and carpel development and is part of a monophyletic clade of MADS-box genes that also includes SHATTERPROOF1 (SHP1), SHP2, and SEEDSTICK (STK). Here, we show that ectopic expression of either the STK or SHP gene is sufficient to induce the transformation of sepals into carpeloid organs bearing ovules. Moreover, the fact that these organ transformations occur when the STK gene is expressed ectopically in ag mutants shows that STK can promote carpel development in the absence of AG activity. We also show that STK, AG, SHP1, and SHP2 can form multimeric complexes and that these interactions require the SEPALLATA (SEP) MADS-box proteins. We provide genetic evidence for this role of the SEP proteins by showing that a reduction in SEP activity leads to the loss of normal ovule development, similar to what occurs in stk shp1 shp2 triple mutants. Together, these results indicate that the SEP proteins, which are known to form multimeric complexes in the control of flower organ identity, also form complexes to control normal ovule development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Proteínas de Dominio MADS/genética , Semillas/crecimiento & desarrollo , Proteína AGAMOUS de Arabidopsis/genética , Proteína AGAMOUS de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Dominio MADS/metabolismo , Microscopía Electrónica de Rastreo , Mutación , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/ultraestructura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA