Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 578(7793): 66-69, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025016

RESUMEN

The discovery of superconductivity at 200 kelvin in the hydrogen sulfide system at high pressures1 demonstrated the potential of hydrogen-rich materials as high-temperature superconductors. Recent theoretical predictions of rare-earth hydrides with hydrogen cages2,3 and the subsequent synthesis of LaH10 with a superconducting critical temperature (Tc) of 250 kelvin4,5 have placed these materials on the verge of achieving the long-standing goal of room-temperature superconductivity. Electrical and X-ray diffraction measurements have revealed a weakly pressure-dependent Tc for LaH10 between 137 and 218 gigapascals in a structure that has a face-centred cubic arrangement of lanthanum atoms5. Here we show that quantum atomic fluctuations stabilize a highly symmetrical [Formula: see text] crystal structure over this pressure range. The structure is consistent with experimental findings and has a very large electron-phonon coupling constant of 3.5. Although ab initio classical calculations predict that this [Formula: see text] structure undergoes distortion at pressures below 230 gigapascals2,3, yielding a complex energy landscape, the inclusion of quantum effects suggests that it is the true ground-state structure. The agreement between the calculated and experimental Tc values further indicates that this phase is responsible for the superconductivity observed at 250 kelvin. The relevance of quantum fluctuations calls into question many of the crystal structure predictions that have been made for hydrides within a classical approach and that currently guide the experimental quest for room-temperature superconductivity6-8. Furthermore, we find that quantum effects are crucial for the stabilization of solids with high electron-phonon coupling constants that could otherwise be destabilized by the large electron-phonon interaction9, thus reducing the pressures required for their synthesis.

2.
Nature ; 584(7822): E37, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32782392

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nature ; 581(7806): 53-57, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32376952

RESUMEN

Thermoelectric generation using the anomalous Nernst effect (ANE) has great potential for application in energy harvesting technology because the transverse geometry of the Nernst effect should enable efficient, large-area and flexible coverage of a heat source. For such applications to be viable, substantial improvements will be necessary not only for their performance but also for the associated material costs, safety and stability. In terms of the electronic structure, the anomalous Nernst effect (ANE) originates from the Berry curvature of the conduction electrons near the Fermi energy1,2. To design a large Berry curvature, several approaches have been considered using nodal points and lines in momentum space3-10. Here we perform a high-throughput computational search and find that 25 percent doping of aluminium and gallium in alpha iron, a naturally abundant and low-cost element, dramatically enhances the ANE by a factor of more than ten, reaching about 4 and 6 microvolts per kelvin at room temperature, respectively, close to the highest value reported so far. The comparison between experiment and theory indicates that the Fermi energy tuning to the nodal web-a flat band structure made of interconnected nodal lines-is the key for the strong enhancement in the transverse thermoelectric coefficient, reaching a value of about 5 amperes per kelvin per metre with a logarithmic temperature dependence. We have also succeeded in fabricating thin films that exhibit a large ANE at zero field, which could be suitable for designing low-cost, flexible microelectronic thermoelectric generators11-13.

4.
Phys Rev Lett ; 130(12): 126302, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37027855

RESUMEN

We investigate ultrafast dynamics of the anomalous Hall effect (AHE) in the topological antiferromagnet Mn_{3}Sn with sub-100 fs time resolution. Optical pulse excitations largely elevate the electron temperature up to 700 K, and terahertz probe pulses clearly resolve ultrafast suppression of the AHE before demagnetization. The result is well reproduced by microscopic calculation of the intrinsic Berry-curvature mechanism while the extrinsic contribution is clearly excluded. Our work opens a new avenue for the study of nonequilibrium AHE to identify the microscopic origin by drastic control of the electron temperature by light.

5.
Phys Rev Lett ; 125(11): 117204, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32975986

RESUMEN

Using the ab initio local force method, we investigate the formation mechanism of the helical spin structure in GdRu_{2}Si_{2} and Gd_{2}PdSi_{3}. We calculate the paramagnetic spin susceptibility and find that the Fermi surface nesting is not the origin of the incommensurate modulation, in contrast to the naive scenario based on the Ruderman-Kittel-Kasuya-Yosida mechanism. We then decompose the exchange interactions between the Gd spins into each orbital component, and show that spin-density-wave type interaction between the Gd-5d orbitals is ferromagnetic, but the interaction between the Gd-4f orbitals is antiferromagnetic. We conclude that the competition of these two interactions, namely, the interorbital frustration, stabilizes the finite-Q structure.

6.
Inorg Chem ; 57(17): 10587-10590, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30125094

RESUMEN

Recently, superconductivity was induced by expanding interlayer distance between Bi square nets in anti-ThCr2Si2-type Y2O2Bi through incorporation of excess oxygen with increased nominal amount of oxygen. However, such oxygen incorporation was applicable to only Y2O2Bi among R2O2Bi ( R = rare earth metal), probably due to a larger amount of oxygen incorporation for Y2O2Bi. In this study, the interlayer distance in Er2O2Bi was increased by cosintering with CaO, which served as an oxidant, indicating that excess oxygen was incorporated in Er2O2Bi. As a result, superconductivity was induced in Er2O2Bi at 2.2 K.

7.
Nano Lett ; 16(8): 4819-24, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27462825

RESUMEN

The electric field effect is a useful means of elucidating intrinsic material properties as well as for designing functional devices. The electric-double-layer transistor (EDLT) enables the control of carrier density in a wide range, which is recently proved to be an effective tool for the investigation of thermoelectric properties. Here, we report the gate-tuning of thermoelectric power in a black phosphorus (BP) single crystal flake with the thickness of 40 nm. Using an EDLT configuration, we successfully control the thermoelectric power (S) and find that the S of ion-gated BP reached +510 µV/K at 210 K in the hole depleted state, which is much higher than the reported bulk single crystal value of +340 µV/K at 300 K. We compared this experimental data with the first-principles-based calculation and found that this enhancement is qualitatively explained by the effective thinning of the conduction channel of the BP flake and nonuniformity of the channel owing to the gate operation in a depletion mode. Our results provide new opportunities for further engineering BP as a thermoelectric material in nanoscale.

8.
Angew Chem Int Ed Engl ; 56(31): 9106-9110, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28608471

RESUMEN

Cylinder-shaped graphitic networks in carbon nanotubes have attracted interest from scientists in various disciplines. The chemical synthesis of segments thereof is considered as a challenging and appealing subject in chemistry, and deepens our understanding of curved and conjugated arrays of hexagons. We herein report the synthesis of cylinder-shaped molecules containing non-hexagon bridges in their conjugated systems. Multiple pentagon units were embedded in the cylinder-shaped discrete molecules, and the stereoisomerism originating from their helical carbon arrangements was studied. Structural analysis by NMR, UV/Vis absorption spectroscopy, and single-crystal X-ray diffraction provided fundamental experimental information on the curved systems with conjugation across the pentagons. This study provides the first experimental guide for further explorations of anomalous non-hexagon arrays of graphitic carbon materials with cylindrical shapes.

9.
Phys Rev Lett ; 116(24): 247201, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27367402

RESUMEN

We present a physical picture for the emergence of the Dzyaloshinskii-Moriya (DM) interaction based on the idea of the Doppler shift by an intrinsic spin current induced by spin-orbit interaction under broken inversion symmetry. The picture is confirmed by a rigorous effective Hamiltonian theory, which reveals that the DM coefficient is given by the magnitude of the intrinsic spin current. Our approach is directly applicable to first principles calculations and clarifies the relation between the interaction and the electronic band structures. Quantitative agreement with experimental results is obtained for the skyrmion compounds Mn_{1-x}Fe_{x}Ge and Fe_{1-x}Co_{x}Ge.

10.
Chemistry ; 22(17): 6023-30, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-26989854

RESUMEN

Coronene, which is the smallest D6h -symmetric polycyclic aromatic hydrocarbon, attracts particular attention as a basic component of electronic materials because it is the smallest fragment of graphene. However, carrier generation by physical methods, such as photo- or electric field-effect, has barely been studied, primarily because of the poor π-conduction pathway in pristine coronene solid. In this work we have developed unprecedented π-stacking columns of cationic coronene molecules by electrochemical hole-doping with polyoxometallate dianions. The face-to-face π-π interactions as well as the partially charged state lead to electrical conductivity at room temperature of up to 3 S cm(-1) , which is more than 10 orders of magnitude higher than that of pristine coronene solid. Additionally, the robust π-π interactions strongly suppress the in-plane rotation of the coronene molecules, which has allowed the first direct observation of the static Jahn-Teller distortion of cationic coronene molecules.

11.
Phys Rev Lett ; 115(15): 156601, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26550741

RESUMEN

We theoretically show that an interlayer bias voltage in the AB-stacked bilayer graphene nanoribbons with armchair edges induces an electric polarization along the ribbon. Both tight-binding and ab initio calculations consistently indicate that when the bias voltage is weak, the polarization shows opposite signs depending on the ribbon width modulo three. This nontrivial dependence is explained using a two-band effective model. A strong limit of the bias voltage in the tight-binding model shows either one-third or zero polarization, which agrees with the topological argument.


Asunto(s)
Grafito/química , Modelos Teóricos , Nanotubos de Carbono/química , Conductividad Eléctrica
12.
Sci Rep ; 14(1): 18399, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117729

RESUMEN

Pressurized hydrogen-based superconductors are phonon-mediated superconductors that exhibit high phonon frequencies. In these superconductors, in addition to the density of states (DOS) at the Fermi energy ( E F ), the energy dependence of the DOS around E F becomes important for evaluating their transition temperature ( T c ). Systems with peak structures in the DOS around E F , such as I m 3 ¯ m H 3 S and F m 3 ¯ m LaH 10 , highlight this point. We use the fully ab initio Eliashberg method to investigate this phenomenon in I m 3 ¯ m CaH 6 and F m 3 ¯ m ThH 10 with a dip structure in their DOS around E F . Our calculated T c values (225-235 K for CaH 6 at 200 GPa and 156-158 K for ThH 10 at 170 GPa) are quantitatively consistent with the experimental results. Remarkably, our results from the self-consistent treatment of the electron Green's function contrasts with those cases with a peak structure in the DOS. This finding unifies the understanding of how DOS structures influence the evaluation of T c .

13.
ACS Nano ; 18(35): 23979-23990, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39162686

RESUMEN

Chirality-controlled synthesis of carbon nanotubes (CNTs) is one of the ultimate goals in the field of nanotube synthesis. At present, direct synthesis achieving a purity of over 90%, which can be called single-chirality synthesis, has been achieved for only two types of chiralities: (14,4) and (12,6) CNTs. Here, we realized an ultrahigh-purity (∼95.8%) synthesis of (6,5) CNTs with a trimetallic catalyst NiSnFe. Partial formation of Ni3Sn crystals was found within the NiSnFe nanoparticles. The activation energy for the selective growth of (6,5) CNTs decreased owing to the formation of Ni3Sn crystals, resulting in the high-purity synthesis of (6,5) CNTs. Transmission electron microscopy (TEM) reveals that one-dimensional (1D) crystals of periodic strip lines with 8.8 Šspacing are formed within the as-grown ultrahigh-purity (6,5) CNTs, which are well-matched with the simulated TEM image of closely packed 37 (6,5) CNTs with 2.8 Šintertube distance, indicating the direct formation of chirality-pure (6,5)-CNT bundle structures. The photoluminescence (PL) lifetime increases more than 20 times by the formation of chirality-pure bundle structures of (6,5) CNTs compared to that of isolated (6,5) CNTs. This can be explained by exciton delocalization or intertube excitons within bundle structures of chirality-pure (6,5) CNTs.

14.
Sci Adv ; 8(2): eabk1480, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35030028

RESUMEN

Anomalous Nernst effect (ANE), converting a heat flow to transverse electric voltage, originates from the Berry phase of electronic wave function near the Fermi energy EF. Thus, the ANE provides a sensitive probe to detect a topological state that produces large Berry curvature. In addition, a magnet that exhibits a large ANE using low-cost and safe elements will be useful to develop a novel energy harvesting technology. Here, we report our observation of a high ANE exceeding 3 microvolts per kelvin above room temperature in the kagome ferromagnet Fe3Sn with the Curie temperature of 760 kelvin. Our theoretical analysis clarifies that a "nodal plane" produces a flat hexagonal frame with strongly enhanced Berry curvature, resulting in the large ANE. Our discovery of the large ANE in Fe3Sn opens the path for the previously unexplored functionality of flat degenerate electronic states and for developing flexible film thermopile and heat current sensors.

15.
Nat Commun ; 12(1): 5582, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552070

RESUMEN

Recently found anomalous Hall, Nernst, magnetooptical Kerr, and spin Hall effects in the antiferromagnets Mn3X (X = Sn, Ge) are attracting much attention for spintronics and energy harvesting. Since these materials are antiferromagnets, the origin of these functionalities is expected to be different from that of conventional ferromagnets. Here, we report the observation of ferroic order of magnetic octupole in Mn3Sn by X-ray magnetic circular dichroism, which is only predicted theoretically so far. The observed signals are clearly decoupled with the behaviors of uniform magnetization, indicating that the present X-ray magnetic circular dichroism is not arising from the conventional magnetization. We have found that the appearance of this anomalous signal coincides with the time reversal symmetry broken cluster magnetic octupole order. Our study demonstrates that the exotic material functionalities are closely related to the multipole order, which can produce unconventional cross correlation functionalities.

16.
Nat Commun ; 12(1): 572, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495448

RESUMEN

The recent discoveries of strikingly large zero-field Hall and Nernst effects in antiferromagnets Mn3X (X = Sn, Ge) have brought the study of magnetic topological states to the forefront of condensed matter research and technological innovation. These effects are considered fingerprints of Weyl nodes residing near the Fermi energy, promoting Mn3X (X = Sn, Ge) as a fascinating platform to explore the elusive magnetic Weyl fermions. In this review, we provide recent updates on the insights drawn from experimental and theoretical studies of Mn3X (X = Sn, Ge) by combining previous reports with our new, comprehensive set of transport measurements of high-quality Mn3Sn and Mn3Ge single crystals. In particular, we report magnetotransport signatures specific to chiral anomalies in Mn3Ge and planar Hall effect in Mn3Sn, which have not yet been found in earlier studies. The results summarized here indicate the essential role of magnetic Weyl fermions in producing the large transverse responses in the absence of magnetization.

17.
J Phys Condens Matter ; 32(16): 165902, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-31658458

RESUMEN

Wannier90 is an open-source computer program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch states. It is interfaced to many widely used electronic-structure codes thanks to its independence from the basis sets representing these Bloch states. In the past few years the development of Wannier90 has transitioned to a community-driven model; this has resulted in a number of new developments that have been recently released in Wannier90 v3.0. In this article we describe these new functionalities, that include the implementation of new features for wannierisation and disentanglement (symmetry-adapted Wannier functions, selectively-localised Wannier functions, selected columns of the density matrix) and the ability to calculate new properties (shift currents and Berry-curvature dipole, and a new interface to many-body perturbation theory); performance improvements, including parallelisation of the core code; enhancements in functionality (support for spinor-valued Wannier functions, more accurate methods to interpolate quantities in the Brillouin zone); improved usability (improved plotting routines, integration with high-throughput automation frameworks), as well as the implementation of modern software engineering practices (unit testing, continuous integration, and automatic source-code documentation). These new features, capabilities, and code development model aim to further sustain and expand the community uptake and range of applicability, that nowadays spans complex and accurate dielectric, electronic, magnetic, optical, topological and transport properties of materials.

18.
Phys Rev B ; 1002019.
Artículo en Inglés | MEDLINE | ID: mdl-33655090

RESUMEN

Magnetic properties of MnSb2Te4 were examined through magnetic susceptibility, specific-heat, and neutron-diffraction measurements. As opposed to isostructural MnBi2Te4 with the antiferromagnetic ground state, MnSb2Te4 develops a spontaneous magnetization below 25 K. From our first-principles calculations on the material in a ferromagnetic state, the state could be interpreted as a type-II Weyl semimetal state with broken time-reversal symmetry. Detailed structural refinements using x-ray-diffraction and neutron-diffraction data reveal the presence of site mixing between Mn and Sb sites, leading to the ferrimagnetic ground state. With theoretical calculations, we found that the presence of site mixing plays an important role for the interlayer Mn-Mn ferromagnetic interactions.

19.
Science ; 363(6423): 151-155, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30630926

RESUMEN

Discrete graphitic carbon compounds serve as tunable models for the properties of extended macromolecular structures such as nanotubes. Here, we report synthesis and characterization of a cylindrical C304H264 molecule composed of 40 benzene (phenine) units mutually bonded at the 1, 3, and 5 positions. The concise nine-step synthesis featuring successive borylations and couplings proceeded with an average yield for each benzene-benzene bond formation of 91%. The molecular structure of the nanometer-sized cylinder with periodic vacancy defects was confirmed spectroscopically and crystallographically. The nanoporous nature of the compound further enabled inclusion of multiple fullerene guests. Computations suggest that fusing many such cylinders could produce carbon nanotubes with electronic properties modulated by the periodic vacancy defects.

20.
Sci Technol Adv Mater ; 9(4): 044203, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27878020

RESUMEN

We study boron-doped carbon nanotubes by first-principles methods based on the density functional theory. To discuss the possibility of superconductivity, we calculate the electronic band structure and the density of states (DOS) of boron-doped (10,0) nanotubes by changing the boron density. It is found that the Fermi level density of states D(∊F) increases upon lowering the boron density. This can be understood in terms of the rigid band picture where the one-dimensional van Hove singularity lies at the edge of the valence band in the DOS of the pristine nanotube. The effect of three-dimensionality is also considered by performing the calculations for bundled (10,0) nanotubes and boron-doped double-walled carbon nanotubes (10,0)@(19,0). From the calculation of the bundled nanotubes, it is found that interwall dispersion is sufficiently large to broaden the peaks of the van Hove singularity in the DOS. Thus, to achieve the high D(∊F) using the bundle of nanotubes with single chirality, we should take into account the distance from each nanotube. In the case of double-walled carbon nanotubes, we find that the holes introduced to the inner tube by boron doping spread also on the outer tube, while the band structure of each tube remains almost unchanged.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA