Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
BMC Infect Dis ; 23(1): 254, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081456

RESUMEN

BACKGROUND: To reduce the burden from the COVID-19 pandemic in the United States, federal and state local governments implemented restrictions such as limitations on gatherings, restaurant dining, and travel, and recommended non-pharmaceutical interventions including physical distancing, mask-wearing, surface disinfection, and increased hand hygiene. Resulting behavioral changes impacted other infectious diseases including enteropathogens such as norovirus and rotavirus, which had fairly regular seasonal patterns prior to the COVID-19 pandemic. The study objective was to project future incidence of norovirus and rotavirus gastroenteritis as contacts resumed and other NPIs are relaxed. METHODS: We fitted compartmental mathematical models to pre-pandemic U.S. surveillance data (2012-2019) for norovirus and rotavirus using maximum likelihood estimation. Then, we projected incidence for 2022-2030 under scenarios where the number of contacts a person has per day varies from70%, 80%, 90%, and full resumption (100%) of pre-pandemic levels. RESULTS: We found that the population susceptibility to both viruses increased between March 2020 and November 2021. The 70-90% contact resumption scenarios led to lower incidence than observed pre-pandemic for both viruses. However, we found a greater than two-fold increase in community incidence relative to the pre-pandemic period under the 100% contact scenarios for both viruses. With rotavirus, for which population immunity is driven partially by vaccination, patterns settled into a new steady state quickly in 2022 under the 70-90% scenarios. For norovirus, for which immunity is relatively short-lasting and only acquired through infection, surged under the 100% contact scenario projection. CONCLUSIONS: These results, which quantify the consequences of population susceptibility build-up, can help public health agencies prepare for potential resurgence of enteric viruses.


Asunto(s)
COVID-19 , Infecciones por Caliciviridae , Infecciones por Enterovirus , Gastroenteritis , Norovirus , Infecciones por Rotavirus , Rotavirus , Virus , Humanos , Estados Unidos/epidemiología , COVID-19/epidemiología , Pandemias , Gastroenteritis/epidemiología , Infecciones por Rotavirus/epidemiología , Infecciones por Enterovirus/epidemiología , Infecciones por Caliciviridae/epidemiología , Modelos Teóricos
2.
Food Control ; 133: 108632, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34703082

RESUMEN

The SARS-CoV-2 global pandemic poses significant health risks to workers who are essential to maintaining the food supply chain. Using a quantitative risk assessment model, this study characterized the impact of risk reduction strategies for controlling SARS-CoV-2 transmission (droplet, aerosol, fomite-mediated) among front-line workers in a representative indoor fresh fruit and vegetable manufacturing facility. We simulated: 1) individual and cumulative SARS-CoV-2 infection risks from close contact (droplet and aerosols at 1-3 m), aerosol, and fomite-mediated exposures to a susceptible worker following exposure to an infected worker during an 8 h-shift; and 2) the relative reduction in SARS-CoV-2 infection risk attributed to infection control interventions (physical distancing, mask use, ventilation, surface disinfection, hand hygiene, vaccination). Without mitigation measures, the SARS-CoV-2 infection risk was largest for close contact (droplet and aerosol) at 1 m (0.96, 5th - 95th percentile: 0.67-1.0). In comparison, risk associated with fomite (0.26, 5th - 95th percentile: 0.10-0.56) or aerosol exposure alone (0.05, 5th - 95th percentile: 0.01-0.13) at 1 m distance was substantially lower (73-95%). At 1 m, droplet transmission predominated over aerosol and fomite-mediated transmission, however, this changed by 3 m, with aerosols comprising the majority of the exposure dose. Increasing physical distancing reduced risk by 84% (1-2 m) and 91% (1-3 m). Universal mask use reduced infection risk by 52-88%, depending on mask type. Increasing ventilation (from 0.1 to 2-8 air changes/hour) resulted in risk reductions of 14-54% (1 m) and 55-85% (2 m). Combining these strategies, together with handwashing and surface disinfection, resulted in <1% infection risk. Partial or full vaccination of the susceptible worker resulted in risk reductions of 73-92% (1 m risk range: 0.08-0.26). However, vaccination paired with other interventions (ACH 2, mask use, or distancing) was necessary to achieve infection risks <1%. Current industry SARS-CoV-2 risk reduction strategies, particularly when bundled, provide significant protection to essential food workers.

3.
Food Control ; 136: 108845, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35075333

RESUMEN

Countries continue to debate the need for decontamination of cold-chain food packaging to reduce possible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) fomite transmission among frontline workers. While laboratory-based studies demonstrate persistence of SARS-CoV-2 on surfaces, the likelihood of fomite-mediated transmission under real-life conditions is uncertain. Using a quantitative microbial risk assessment model of a frozen food packaging facility, we simulated 1) SARS-CoV-2 fomite-mediated infection risks following worker exposure to contaminated plastic packaging; and 2) reductions in these risks from masking, handwashing, and vaccination. In a frozen food facility without interventions, SARS-CoV-2 infection risk to a susceptible worker from contact with contaminated packaging was 1.5 × 10-3 per 1h-period (5th - 95th percentile: 9.2 × 10-6, 1.2 × 10-2). Standard food industry infection control interventions, handwashing and masking, reduced risk (99.4%) to 8.5 × 10-6 risk per 1h-period (5th - 95th percentile: 2.8 × 10-8, 6.6 × 10-5). Vaccination of the susceptible worker (two doses Pfizer/Moderna, vaccine effectiveness: 86-99%) with handwashing and masking reduced risk to 5.2 × 10-7 risk per 1h-period (5th - 95th percentile: 1.8 × 10-9, 5.4 × 10-6). Simulating increased transmissibility of current and future variants (Delta, Omicron), (2-, 10-fold viral shedding) among a fully vaccinated workforce, handwashing and masking continued to mitigate risk (1.4 × 10-6 - 8.8 × 10-6 risk per 1h-period). Additional decontamination of frozen food plastic packaging reduced infection risks to 1.2 × 10-8 risk per 1h-period (5th - 95th percentile: 1.9 × 10-11, 9.5 × 10-8). Given that standard infection control interventions reduced risks well below 1 × 10-4 (World Health Organization water quality risk thresholds), additional packaging decontamination suggest no marginal benefit in risk reduction. Consequences of this decontamination may include increased chemical exposures to workers, food quality and hazard risks to consumers, and unnecessary added costs to governments and the global food industry.

4.
J Infect Dis ; 224(1): 9-13, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33606027

RESUMEN

In April 2020, the incidence of norovirus outbreaks reported to the National Outbreak Reporting System dramatically declined. We used regression models to determine if this decline was best explained by underreporting, seasonal trends, or reduced exposure due to nonpharmaceutical interventions (NPIs) implemented for severe acute respiratory syndrome coronavirus 2 using data from 9 states from July 2012 to July 2020. The decline in norovirus outbreaks was significant for all 9 states, and underreporting and/or seasonality are unlikely to be the primary explanation for these findings. These patterns were similar across a variety of settings. NPIs appear to have reduced incidence of norovirus, a nonrespiratory pathogen.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , Coinfección , Norovirus , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/terapia , Infección Hospitalaria , Manejo de la Enfermedad , Brotes de Enfermedades , Humanos , Incidencia , Estaciones del Año , Estados Unidos/epidemiología
6.
Epidemiology ; 32(4): 518-524, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33935138

RESUMEN

BACKGROUND: Serology tests can identify previous infections and facilitate estimation of the number of total infections. However, immunoglobulins targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported to wane below the detectable level of serologic assays (which is not necessarily equivalent to the duration of protective immunity). We estimate the cumulative incidence of SARS-CoV-2 infection from serology studies, accounting for expected levels of antibody acquisition (seroconversion) and waning (seroreversion), and apply this framework using data from New York City and Connecticut. METHODS: We estimated time from seroconversion to seroreversion and infection fatality ratio (IFR) using mortality data from March to October 2020 and population-level cross-sectional seroprevalence data from April to August 2020 in New York City and Connecticut. We then estimated the daily seroprevalence and cumulative incidence of SARS-CoV-2 infection. RESULTS: The estimated average time from seroconversion to seroreversion was 3-4 months. The estimated IFR was 1.1% (95% credible interval, 1.0%, 1.2%) in New York City and 1.4% (1.1, 1.7%) in Connecticut. The estimated daily seroprevalence declined after a peak in the spring. The estimated cumulative incidence reached 26.8% (24.2%, 29.7%) at the end of September in New York City and 8.8% (7.1%, 11.3%) in Connecticut, higher than maximum seroprevalence measures (22.1% and 6.1%), respectively. CONCLUSIONS: The cumulative incidence of SARS-CoV-2 infection is underestimated using cross-sectional serology data without adjustment for waning antibodies. Our approach can help quantify the magnitude of underestimation and adjust estimates for waning antibodies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Connecticut/epidemiología , Estudios Transversales , Humanos , Incidencia , Ciudad de Nueva York , Estudios Seroepidemiológicos
7.
Proc Natl Acad Sci U S A ; 115(12): E2782-E2790, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29496960

RESUMEN

Rotavirus is considered a directly transmitted disease due to its high infectivity. Environmental pathways have, therefore, largely been ignored. Rotavirus, however, persists in water sources, and both its surface water concentrations and infection incidence vary with temperature. Here, we examine the potential for waterborne rotavirus transmission. We use a mechanistic model that incorporates both direct and waterborne transmission pathways, coupled with a hydrological model, and we simulate rotavirus transmission between two communities with interconnected water sources. To parameterize temperature dependency, we estimated temperature-dependent decay rates in water through a meta-analysis. Our meta-analysis suggests that rotavirus decay rates are positively associated with temperature (n = 39, P [Formula: see text] 0.001). This association is stronger at higher temperatures (over 20 °C), consistent with tropical climate conditions. Our model analysis demonstrates that water could disseminate rotavirus between the two communities for all modeled temperatures. While direct transmission was important for disease amplification within communities, waterborne transmission could also amplify transmission. In standing-water systems, the modeled increase in decay led to decreased disease, with every 1 °C increase in temperature leading to up to a 2.4% decrease in incidence. These effect sizes are consistent with prior meta-analyses, suggesting that environmental transmission through water sources may partially explain the observed associations between temperature and rotavirus incidence. Waterborne rotavirus transmission is likely most important in cooler seasons and in communities that use slow-moving or stagnant water sources. Even when indirect transmission through water cannot sustain outbreaks, it can seed outbreaks that are maintained by high direct transmission rates.


Asunto(s)
Modelos Teóricos , Infecciones por Rotavirus/transmisión , Brotes de Enfermedades , Ecuador/epidemiología , Agua Dulce , Humanos , Hidrología/métodos , Incidencia , Rotavirus/patogenicidad , Infecciones por Rotavirus/epidemiología , Temperatura , Clima Tropical
9.
Epidemiology ; 29(1): 117-125, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28901976

RESUMEN

BACKGROUND: Human mobility is important for infectious disease spread. However, little is known about how travel varies by demographic groups and how this heterogeneity influences infectious disease risk. METHODS: We analyzed 10 years of survey data from 15 communities in a remote but rapidly changing region in rural Ecuador where road development in the past 15-20 years has dramatically changed travel. We identify determinants of travel and incorporate them into an infection transmission model. RESULTS: Individuals living in communities more remote at baseline had lower travel rates compared with less remote villages (adjusted odds ratio [OR] = 0.51; 95% confidence interval [CI] = 0.38, 0.67). Our model predicts that less remote villages are, therefore, at increased disease risk. Though road building and travel increased for all communities, this risk differential remained over 10 years of observation. Our transmission model also suggests that travelers and nontravelers have different roles in disease transmission. Adults travel more than children (adjusted OR = 1.73; 95% CI = 1.30, 2.31) and therefore disseminate infection from population centers to rural communities. Children are more likely than adults to be infected locally (attributable fraction = 0.24 and 0.09, respectively) and were indirectly affected by adult travel patterns. CONCLUSIONS: These results reinforce the importance of large population centers for regional transmission and show that children and adults may play different roles in disease spread. Changing transportation infrastructure and subsequent economic and social transitions are occurring worldwide, potentially causing increased regional risk of disease.


Asunto(s)
Ciudades , Enfermedades Transmisibles/transmisión , Países en Desarrollo , Migración Humana , Población Rural , Transportes , Viaje , Adulto , Niño , Preescolar , Enfermedades Transmisibles/epidemiología , Ecuador/epidemiología , Humanos , Oportunidad Relativa , Análisis de Regresión
10.
BMC Infect Dis ; 18(1): 540, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30373527

RESUMEN

BACKGROUND: Fomite mediated transmission can be an important pathway causing significant disease transmission in number of settings such as schools, daycare centers, and long-term care facilities. The importance of these pathways relative to other transmission pathways such as direct person-person or airborne will depend on the characteristics of the particular pathogen and the venue in which transmission occurs. Here we analyze fomite mediated transmission through a comparative analysis across multiple pathogens and venues. METHODS: We developed and analyzed a compartmental model that explicitly accounts for fomite transmission by including pathogen transfer between hands and surfaces. We consider two sub-types of fomite-mediated transmission: direct fomite (e.g., shedding onto fomites) and hand-fomite (e.g., shedding onto hands and then contacting fomites). We use this model to examine three pathogens with distinct environmental characteristics (influenza, rhinovirus, and norovirus) in four venue types. To parameterize the model for each pathogen we conducted a thorough literature search. RESULTS: Based on parameter estimates from the literature the reproductive number ([Formula: see text]) for the fomite route for rhinovirus and norovirus is greater than 1 in nearly all venues considered, suggesting that this route can sustain transmission. For influenza, on the other hand, [Formula: see text] for the fomite route is smaller suggesting many conditions in which the pathway may not sustain transmission. Additionally, the direct fomite route is more relevant than the hand-fomite route for influenza and rhinovirus, compared to norovirus. The relative importance of the hand-fomite vs. direct fomite route for norovirus is strongly dependent on the fraction of pathogens initially shed to hands. Sensitivity analysis stresses the need for accurate measurements of environmental inactivation rates, transfer efficiencies, and pathogen shedding. CONCLUSIONS: Fomite-mediated transmission is an important pathway for the three pathogens examined. The effectiveness of environmental interventions differs significantly both by pathogen and venue. While fomite-based interventions may be able to lower [Formula: see text] for fomites below 1 and interrupt transmission, rhinovirus and norovirus are so infectious ([Formula: see text]) that single environmental interventions are unlikely to interrupt fomite transmission for these pathogens.


Asunto(s)
Fómites/virología , Modelos Teóricos , Virosis/transmisión , Humanos , Norovirus/patogenicidad , Orthomyxoviridae/patogenicidad , Rhinovirus/patogenicidad , Virosis/virología
11.
J Infect Dis ; 224(2): 371-372, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33963751
12.
Nat Commun ; 12(1): 7063, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862373

RESUMEN

Serological testing remains a passive component of the public health response to the COVID-19 pandemic. Using a transmission model, we examine how serological testing could have enabled seropositive individuals to increase their relative levels of social interaction while offsetting transmission risks. We simulate widespread serological testing in New York City, South Florida, and Washington Puget Sound and assume seropositive individuals partially restore their social contacts. Compared to no intervention, our model suggests that widespread serological testing starting in late 2020 would have averted approximately 3300 deaths in New York City, 1400 deaths in South Florida and 11,000 deaths in Washington State by June 2021. In all sites, serological testing blunted subsequent waves of transmission. Findings demonstrate the potential benefit of widespread serological testing, had it been implemented in the pre-vaccine era, and remain relevant now amid the potential for emergence of new variants.


Asunto(s)
Prueba Serológica para COVID-19/estadística & datos numéricos , COVID-19/diagnóstico , Modelos Epidemiológicos , Pandemias/prevención & control , Distanciamiento Físico , COVID-19/mortalidad , COVID-19/transmisión , COVID-19/virología , Simulación por Computador , Florida/epidemiología , Humanos , Ciudad de Nueva York/epidemiología , Pandemias/estadística & datos numéricos , Washingtón/epidemiología
13.
Int J Epidemiol ; 49(5): 1691-1701, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32844206

RESUMEN

BACKGROUND: Although live attenuated monovalent human rotavirus vaccine (Rotarix) efficacy has been characterized through randomized studies, its effectiveness, especially in non-clinical settings, is less clear. In this study, we estimate the impact of childhood Rotarix® vaccination on community rotavirus prevalence. METHODS: We analyse 10 years of serial population-based diarrhoea case-control study, which also included testing for rotavirus infection (n = 3430), and 29 months of all-cause diarrhoea active surveillance from a child cohort (n = 376) from rural Ecuador during a period in which Rotarix vaccination was introduced. We use weighted logistic regression from the case-control data to assess changes in community rotavirus prevalence (both symptomatic and asymptomatic) and all-cause diarrhoea after the vaccine was introduced. We also assess changes in all-cause diarrhoea rates in the child cohort (born 2008-13) using Cox regression, comparing time to first all-cause diarrhoea case by vaccine status. RESULTS: Overall, vaccine introduction among age-eligible children was associated with a 82.9% reduction [95% confidence interval (CI): 49.4%, 94.2%] in prevalence of rotavirus in participants without diarrhoea symptoms and a 46.0% reduction (95% CI: 6.2%, 68.9%) in prevalence of rotavirus infection among participants experiencing diarrhoea. Whereas all age groups benefited, this reduction was strongest among the youngest age groups. For young children, prevalence of symptomatic diarrhoea also decreased in the post-vaccine period in both the case-control study (reduction in prevalence for children <1 year of age = 69.3%, 95% CI: 8.7%, 89.7%) and the cohort study (reduction in hazard for receipt of two Rotarix doses among children aged 0.5-2 years = 57.1%, 95% CI: 16.6, 77.9%). CONCLUSIONS: Rotarix vaccination may suppress transmission, including asymptomatic transmission, in low- and middle-income settings. It was highly effective among children in a rural community setting and provides population-level benefits through indirect protection among adults.


Asunto(s)
Infecciones por Rotavirus , Rotavirus , Adulto , Anciano , Estudios de Casos y Controles , Niño , Preescolar , Estudios de Cohortes , Ecuador/epidemiología , Humanos , Lactante , Prevalencia , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/prevención & control , Población Rural , Vacunación
14.
medRxiv ; 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32817958

RESUMEN

Significant progress has already been made in development and testing of SARS-CoV-2 vaccines, and Phase III clinical trials have begun for 6 novel vaccine candidates to date. These Phase III trials seek to demonstrate direct benefits of a vaccine on vaccine recipients. However, vaccination is also known to bring about indirect benefits to a population through the reduction of virus circulation. The indirect effects of SARS-CoV-2 vaccination can play a key role in reducing case counts and COVID-19 deaths. To illustrate this point, we show through simulation that a vaccine with strong indirect effects has the potential to reduce SARS-CoV-2 circulation and COVID-19 deaths to a greater extent than an alternative vaccine with stronger direct effects but weaker indirect effects. Protection via indirect effects may be of particular importance in the context of this virus, because elderly individuals are at an elevated risk of death but are also less likely to be directly protected by vaccination due to immune senescence. We therefore encourage ongoing data collection and model development aimed at evaluating the indirect effects of forthcoming SARS-CoV-2 vaccines.

15.
Environ Health Perspect ; 128(12): 126001, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33284047

RESUMEN

BACKGROUND: Projected increases in extreme weather may change relationships between rain-related climate exposures and diarrheal disease. Whether rainfall increases or decreases diarrhea rates is unclear based on prior literature. The concentration-dilution hypothesis suggests that these conflicting results are explained by the background level of rain: Rainfall following dry periods can flush pathogens into surface water, increasing diarrhea incidence, whereas rainfall following wet periods can dilute pathogen concentrations in surface water, thereby decreasing diarrhea incidence. OBJECTIVES: In this analysis, we explored the extent to which the concentration-dilution hypothesis is supported by published literature. METHODS: To this end, we conducted a systematic search for articles assessing the relationship between rain, extreme rain, flood, drought, and season (rainy vs. dry) and diarrheal illness. RESULTS: A total of 111 articles met our inclusion criteria. Overall, the literature largely supports the concentration-dilution hypothesis. In particular, extreme rain was associated with increased diarrhea when it followed a dry period [incidence rate ratio (IRR)=1.26; 95% confidence interval (CI): 1.05, 1.51], with a tendency toward an inverse association for extreme rain following wet periods, albeit nonsignificant, with one of four relevant studies showing a significant inverse association (IRR=0.911; 95% CI: 0.771, 1.08). Incidences of bacterial and parasitic diarrhea were more common during rainy seasons, providing pathogen-specific support for a concentration mechanism, but rotavirus diarrhea showed the opposite association. Information on timing of cases within the rainy season (e.g., early vs. late) was lacking, limiting further analysis. We did not find a linear association between nonextreme rain exposures and diarrheal disease, but several studies found a nonlinear association with low and high rain both being associated with diarrhea. DISCUSSION: Our meta-analysis suggests that the effect of rainfall depends on the antecedent conditions. Future studies should use standard, clearly defined exposure variables to strengthen understanding of the relationship between rainfall and diarrheal illness. https://doi.org/10.1289/EHP6181.


Asunto(s)
Diarrea/epidemiología , Exposición a Riesgos Ambientales/estadística & datos numéricos , Lluvia , Microbiología del Agua
16.
medRxiv ; 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-32511519

RESUMEN

Serological testing remains a passive component of the current public health response to the COVID-19 pandemic. Using a transmission model, we examined how serology can be implemented to allow seropositive individuals to increase levels of social interaction while offsetting transmission risks. We simulated the use of widespread serological testing in three metropolitan areas with different initial outbreak timing and severity characteristics: New York City, South Florida, and Washington Puget Sound. In our model, we use realistic serological assay characteristics, in which tested seropositive individuals partially restore their social contacts and act as immunological 'shields'. Compared to a scenario with no intervention, beginning a mass serological testing program on November 1, 2020 was predicted to avert 15,000 deaths (28% reduction, 95% CrI: 0.4%-30.2%) in New York City, 3,000 (31.1% reduction, 95% CrI: 26.4%-33.3%) in South Florida and 10,000 (60.3% reduction, 95% CrI: 50.2%-60.7%) in Washington State by June 2021. In all three sites, widespread serological testing substantially blunted new waves of transmission. Serological testing has the potential to mitigate the impacts of the COVID-19 pandemic while also allowing a substantial number of individuals to safely return to social interactions and economic activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA