Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Phys Chem Chem Phys ; 25(4): 3251-3257, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36625465

RESUMEN

The binding of peptides and proteins through multiple weak interactions is ubiquitous in nature. Biopanning has been used to "hijack" this multivalent binding for the functionalization of surfaces. For practical applications it is important to understand how multivalency influences the binding interactions and the resulting behaviour of the surface. Considering the importance of optimization of the electronic properties of surfaces in diverse electronic and optoelectronic applications, we study here the relation between the multivalency effect and the resulting modulation of the surface work function. We use 12-mer peptides, which were found to strongly bind to oxide surfaces, to functionalize indium tin oxide (ITO) surfaces. We show that the affinity of the peptides for the ITO surface, and concurrently the effect on the ITO work function, are linearly affected by the number of basic residues in the sequence. The multivalent binding interactions lead to a peptide crowding effect, and a stronger modulation of the work function for adodecapeptide than for a single basic amino acid functionalization. The bioderived molecular platform presented herein can pave the way to a novel approach to improve the performance of optoelectronic devices in an eco-friendly manner.


Asunto(s)
Óxidos , Péptidos , Propiedades de Superficie , Péptidos/química , Electrónica
2.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34576211

RESUMEN

Brominated flame retardants (BFRs) are environmentally persistent, are detected in humans, and some have been banned due to their potential toxicity. BFRs are developmental neurotoxicants and endocrine disruptors; however, few studies have explored their potential nephrotoxicity. We addressed this gap in the literature by determining the toxicity of three different BFRs (tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCD), and tetrabromodiphenyl ether (BDE-47)) in rat (NRK 52E) and human (HK-2 and RPTEC) tubular epithelial cells. All compounds induced time- and concentration-dependent toxicity based on decreases in MTT staining and changes in cell and nuclear morphology. The toxicity of BFRs was chemical- and cell-dependent, and human cells were more susceptible to all three BFRs based on IC50s after 48 h exposure. BFRs also had chemical- and cell-dependent effects on apoptosis as measured by increases in annexin V and PI staining. The molecular mechanisms mediating this toxicity were investigated using RNA sequencing. Principal components analysis supported the hypothesis that BFRs induce different transcriptional changes in rat and human cells. Furthermore, BFRs only shared nine differentially expressed genes in rat cells and five in human cells. Gene set enrichment analysis demonstrated chemical- and cell-dependent effects; however, some commonalities were also observed. Namely, gene sets associated with extracellular matrix turnover, the coagulation cascade, and the SNS-related adrenal cortex response were enriched across all cell lines and BFR treatments. Taken together, these data support the hypothesis that BFRs induce differential toxicity in rat and human renal cell lines that is mediated by differential changes in gene expression.


Asunto(s)
Retardadores de Llama/farmacología , Animales , Secuencia de Bases , Humanos , Hidrocarburos Bromados/farmacología , Riñón/efectos de los fármacos , Riñón/metabolismo , Bifenilos Polibrominados/farmacología , Ratas , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Transcriptoma/fisiología
3.
Biochem Biophys Res Commun ; 515(1): 149-155, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31133375

RESUMEN

Mammalian taste buds emerge perinatally and most become mature 3-4 weeks after birth. Mature taste bud cells in rodents are known to be renewed by the surrounding K14+ basal epithelial cells and potentially other progenitor source(s), but the dynamics between initially developed taste buds and surrounding tissue compartments are unclear. Using the K14-Cre and Dermo1-Cre mouse lines to trace epithelial and mesenchymal cell lineages, we found that early taste buds in E18.5 and newborn mouse tongues are not derived from either lineage. At E11.5 when the tongue primordia (i.e., lingual swellings) emerge, the relatively homogeneous sonic hedgehog-expressing (Shh+) epithelial cells express Keratin (K) 8, a marker that is widely used to label taste buds. Mapping lineage of E11.0 Shh+ epithelium of the tongue rudiment with Shh-CreERT2/RFP mice demonstrated that both the early taste buds and the surrounding lingual epithelium are from the same population of progenitors - Shh+ epithelial cells of the tongue primordium. In combination with previous reports, we propose that Shh+K8+ cells in the homogeneous epithelium of tongue primordium at early embryonic stages are programmed to become taste papilla and taste bud cells. Switching off Shh and K8 expression in the Shh+ epithelial cells of the tongue primordium transforms the cells to non-gustatory cells surrounding papillae, including K14+ basal epithelial cells which will eventually contribute to the cell renewal of mature taste buds.


Asunto(s)
Células Epiteliales/metabolismo , Epitelio/metabolismo , Proteínas Hedgehog/metabolismo , Papilas Gustativas/metabolismo , Lengua/metabolismo , Animales , Epitelio/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Inmunohistoquímica , Queratina-14/genética , Queratina-14/metabolismo , Ratones de la Cepa 129 , Ratones Transgénicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Gusto , Papilas Gustativas/embriología , Lengua/embriología
4.
Phys Chem Chem Phys ; 21(39): 21875-21881, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31553031

RESUMEN

Controlled modification of the semiconductor surface work function is of fundamental importance for improvements in the efficiency of (opto-)electronic devices. Binding amino acids to a semiconductor surface through their common carboxylic group offers a versatile tool for modulation of surface properties by the choice of their side chain. This approach is demonstrated here by tailoring the surface work function of indium tin oxide, one of the most abundant transparent electrodes in organic optoelectronic devices. We find that the work function can be systematically tuned by the side chain of the amino acid, resulting in either an increase or a decrease of the work function, over a large range of ∼250 meV. This side chain effect is mostly due to alteration of the dipole component perpendicular to the surface, with a generally smaller contribution for changes in surface band bending. These findings also shed light on electronic interactions at the interface between proteins and semiconductors, which are of importance for future bio-electronic devices.


Asunto(s)
Aminoácidos/química , Compuestos de Estaño/química , Adsorción , Técnicas Electroquímicas/métodos , Electrodos , Modelos Químicos , Conformación Molecular , Semiconductores , Relación Estructura-Actividad , Propiedades de Superficie
5.
Toxicol Sci ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995820

RESUMEN

Brominated Flame Retardants (BFRs) reduce flammability in a wide range of products including electronics, carpets, and paint, but leach into the environment to result in continuous, population-level exposure. Epidemiology studies have correlated BFR exposure with neurological problems, including alterations in learning and memory. This study investigated the molecular mechanisms mediating BFR-induced cell death in hippocampal cells and clarified the impact of HBCD exposure on gene transcription in the hippocampus, dorsal striatum, and frontal cortex of male mice. Exposure of hippocampus derived HT-22 cells to various flame retardants, including tetrabromobisphenol-A (TBBPA, current use), hexabromocyclododecane (HBCD, phasing out), or 2,2',4,4'-tetrabromodiphenyl ether (BDE-47, phased out) resulted in time, concentration, and chemical-dependent cellular and nuclear morphology alterations, alterations in cell cycle and increases in annexin V staining. All three BFRs increased p53 and p21 expression; however, inhibition of p53 nuclear translocation using pifthrin-α did not decrease cell death. Transcriptomic analysis upon low (10 nM) and cytotoxic (10 µM) BFR exposure indicated that HBCD and BDE-47 altered genes mediating autophagy-related pathways. Further evaluation showed BFR exposure increased LC3-II conversion and autophagosome formation, and co-exposure with the autophagy inhibitor 3-methyladenine (3-MA) attenuated cytotoxicity. Transcriptomic assessment of select brain regions from subchronically HBCD-exposed male mice demonstrated alteration of genes mediating vesicular transport, with greater impact on the frontal cortex and dorsal striatum compared to the dorsal and ventral hippocampus. Immunoblot analysis demonstrated no increases in cell death or autophagy markers, but did demonstrate increases in the SNARE binding complex SNAP29, specifically in the dorsal hippocampus. These data demonstrate that BFRs can induce chemical-dependent autophagy in neural cells in vitro and provide evidence that BFRs induce region-specific transcriptomic and protein expression in the brain suggestive of change in vesicular trafficking.

6.
Toxicol Sci ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037918

RESUMEN

Brominated flame retardants are used in many household products to reduce flammability, but often leach into the surrounding environment over time. Hexabromocyclododecane (HBCD) is one brominated flame retardant detected in human blood across the world. HBCD exposure can result in neurological problems and altered lipid metabolism, but to date the two remain unlinked. As lipids constitute ∼50% of brain dry weight, lipid metabolism plays a critical role in neuronal function and homeostasis. To determine the effect of HBCD exposure on brain lipid metabolism, young adult male C57BL/6 mice were exposed to 1 mg/kg HBCD every 3 days for 28 days. Major lipid classes were found to change across brain regions, including the membrane glycerolipids phosphatidylcholine and phosphatidylethanolamine, and sphingolipids such as hexosylceramide. In addition, saturated, monounsaturated, and polyunsaturated fatty acids were enriched within brain lipid species. To understand the source of the brain lipidomic alterations, the blood and liver lipidomes and the cecal microbiome were evaluated. The liver and blood demonstrated changes amongst multiple lipid classes, including triacylglycerol suppression, as well as altered esterified fatty acid content. Significant alterations were also detected in the cecal microbiome, with decreases in the Firmicutes to Bacteriodetes ratio, changes in beta diversity, and pathway alterations associated with metabolic pathways and amino acid biosynthesis. These data demonstrate that HBCD can induce lipidomic alterations across brain regions and organs and supports a potential role of the microbiome in these alterations.

7.
bioRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38798668

RESUMEN

We have recently demonstrated that Sox10 -expressing ( Sox10 + ) cells give rise to mainly type-III neuronal taste bud cells that are responsible for sour and salt taste. The two tissue compartments containing Sox10 + cells in the surrounding of taste buds include the connective tissue core of taste papillae and von Ebner's glands (vEGs) that are connected to the trench of circumvallate and foliate papillae. In this study, we used inducible Cre mouse models to map the cell lineages of connective tissue (including stromal and Schwann cells) and vEGs and performed single cell RNA-sequencing of the epithelium of Sox10-Cre/tdT mouse circumvallate/vEG complex. In vivo lineage mapping showed that the distribution of traced cells in circumvallate taste buds was closely linked with that in the vEGs, but not in the connective tissue. Sox10 , but not the known stem cells marker Lgr5 , expression was enriched in the cell clusters of main ducts of vEGs that contained abundant proliferating cells, while Sox10-Cre/tdT expression was enriched in type-III taste bud cells and excretory ductal cells. Moreover, multiple genes encoding pathogen receptors are enriched in the vEG main ducts. Our data indicate that the main duct of vEGs is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections.

8.
ACS Infect Dis ; 8(3): 596-611, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35199517

RESUMEN

Over the last 20 years, both severe acute respiratory syndrome coronavirus-1 and severe acute respiratory syndrome coronavirus-2 have transmitted from animal hosts to humans causing zoonotic outbreaks of severe disease. Both viruses originate from a group of betacoronaviruses known as subgroup 2b. The emergence of two dangerous human pathogens from this group along with previous studies illustrating the potential of other subgroup 2b members to transmit to humans has underscored the need for antiviral development against them. Coronaviruses modify the host innate immune response in part through the reversal of ubiquitination and ISGylation with their papain-like protease (PLpro). To identify unique or overarching subgroup 2b structural features or enzymatic biases, the PLpro from a subgroup 2b bat coronavirus, BtSCoV-Rf1.2004, was biochemically and structurally evaluated. This evaluation revealed that PLpros from subgroup 2b coronaviruses have narrow substrate specificity for K48 polyubiquitin and ISG15 originating from certain species. The PLpro of BtSCoV-Rf1.2004 was used as a tool alongside PLpro of CoV-1 and CoV-2 to design 30 novel noncovalent drug-like pan subgroup 2b PLpro inhibitors that included determining the effects of using previously unexplored core linkers within these compounds. Two crystal structures of BtSCoV-Rf1.2004 PLpro bound to these inhibitors aided in compound design as well as shared structural features among subgroup 2b proteases. Screening of these three subgroup 2b PLpros against this novel set of inhibitors along with cytotoxicity studies provide new directions for pan-coronavirus subgroup 2b antiviral development of PLpro inhibitors.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Inhibidores de Proteasas , SARS-CoV-2 , Ubiquitina/metabolismo
9.
Mol Microbiol ; 72(1): 202-15, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19226326

RESUMEN

During the development of transformability (competence), Bacillus subtilis synthesizes a set of proteins that mediate both the uptake of DNA at the cell poles and the recombination of this DNA with the resident chromosome. Most, if not all, of these Com proteins localize to the poles of the cell, where they associate with one another, and are then seen to delocalize as transformability declines. In this study, we use fluorescence microscopy to analyse the localization and delocalization processes. We show that localization most likely occurs by a diffusion-capture mechanism, not requiring metabolic energy, whereas delocalization is prevented in the presence of sodium azide. The kinetics of localization suggest that this process requires the synthesis of a critical protein or set of proteins, which are needed to anchor the Com protein complex to the poles. We further show that the protein kinase proteins McsA and McsB are needed for delocalization, as are ClpP and either of the AAA(+) (ATPases associated with a variety of cellular activities) proteins ClpC or ClpE. Of these proteins, at least McsB, ClpC and ClpP localize to the cell poles of competent cells. Our evidence strongly suggests that delocalization depends on the degradation of the postulated anchor protein(s) by the McsA-McsB-(ClpC or ClpE)-ClpP protease in an ATP-dependent process that involves the autophosphorylation of McsB. The extent of cell-pole association at any given time reflects the relative rates of localization and delocalization. The kinetics of this dynamic process differs for individual Com proteins, with the DNA-binding proteins SsbB and DprA exhibiting less net localization.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Quinasas/metabolismo , Bacillus subtilis/citología , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas de Choque Térmico/metabolismo , Microscopía Fluorescente , Mutación , Fenotipo , Fosforilación , Proteínas Quinasas/genética , Transporte de Proteínas
10.
Histol Histopathol ; 34(5): 503-511, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30378645

RESUMEN

Like other epithelial cells, taste bud cells have a short life span and undergo continuous turnover. An active stem or progenitor cell niche is essential for taste bud formation and maintenance. Early taste bud cells have a life span of ~4 days on average in chicken hatchlings when taste buds grow rapidly and undergo maturation. The average life span is shorter than that of mature taste bud cells of rodents (~10-12 days on average). To better understand the mechanism underlying taste bud growth and homeostasis in chickens, we analyzed the distribution of proliferating cells in different tissue compartments, including taste buds, the surrounding epithelium and the underlying connective tissue in P1-3 hatchlings and P45 chickens. Unlike rodents, which lack proliferating cells within both early and mature taste buds, chickens possessed abundant proliferating cells within early taste buds. Further, at post-hatch day 45, when taste buds are mature and undergo continuous cell renewal, taste buds also contained proliferating cells, though to a lesser extent. These proliferating cells in early taste buds, indicated by PCNA⁺ and BrdU⁺ cells, primarily localized to the basal region of taste buds and were largely unlabeled by the two known molecular markers for chicken taste bud cells (Vimentin and α-Gustducin), suggesting their undifferentiated status. Our data indicate that early chicken taste buds have "built-in" progenitors in order to grow to and maintain their large size and rapid cell turnover in hatchlings.


Asunto(s)
Papilas Gustativas/crecimiento & desarrollo , Animales , Proliferación Celular , Pollos , Células Epiteliales/citología , Células-Madre Neurales/citología
11.
Appl Environ Microbiol ; 74(15): 4671-9, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18539791

RESUMEN

When Lactococcus lactis subsp. lactis IL1403 or L. lactis subsp. cremoris MG1363 is grown in a medium with galactose as the carbon source, the culture lyses to a lesser extent in stationary phase than when the bacteria are grown in a medium containing glucose. Expression of AcmA, the major autolysin of L. lactis, is not influenced by the carbon source. Binding studies with a fusion protein consisting of the MSA2 protein of Plasmodium falciparum and the C-terminal peptidoglycan-binding domain of AcmA revealed that cell walls of cells from both subspecies grown on galactose bind less AcmA than cell walls of cells grown on glucose. Cells grown on glucose or galactose and treated with trichloroacetic acid prior to AcmA binding bind similar amounts of AcmA. Analysis of the composition of the lipoteichoic acids (LTAs) of L. lactis IL1403 cells grown on glucose or galactose showed that the LTA composition is influenced by the carbon source: cells grown on galactose contain LTA with less galactose than cells grown on glucose. In conclusion, growth of L. lactis on galactose changes the LTA composition in the cell wall in such a way that less AcmA is able to bind to the peptidoglycan, resulting in a decrease in autolysis.


Asunto(s)
Pared Celular/fisiología , Galactosa/metabolismo , Lactococcus lactis/fisiología , Muramidasa/metabolismo , Autólisis , Bacteriólisis , Secuencia de Bases , Pared Celular/efectos de los fármacos , ADN Bacteriano/genética , Cinética , Lactococcus lactis/genética , Lactococcus lactis/crecimiento & desarrollo , Datos de Secuencia Molecular , Peptidoglicano/metabolismo , Plásmidos/genética , Unión Proteica , Mapeo Restrictivo
12.
J Nutr Food Sci ; 8(2)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29770259

RESUMEN

Taste is important in guiding nutritive choices and motivating food intake. The sensory organs for taste are the taste buds, that transduce gustatory stimuli into neural signals. It has been reported that chickens have a low taste bud number and thus low taste acuity. However, more recent studies indicate that chickens have a well-developed taste system and the reported number and distribution of taste buds may have been significantly underestimated. Chickens, as a well-established animal model for research, are also the major species of animals in the poultry industry. Thus, a clear understanding of taste organ formation and the effects of taste sensation on nutrition and feeding practices is important for improving livestock production strategies. In this review, we provide an update on recent findings in chicken taste buds and taste sensation indicating that the chicken taste organ is better developed than previously thought and can serve as an ideal system for multidisciplinary studies including organogenesis, regenerative medicine, feeding and nutritional choices.

13.
BMC Genomics ; 6: 77, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15907200

RESUMEN

BACKGROUND: In research laboratories using DNA-microarrays, usually a number of researchers perform experiments, each generating possible sources of error. There is a need for a quick and robust method to assess data quality and sources of errors in DNA-microarray experiments. To this end, a novel and cost-effective validation scheme was devised, implemented, and employed. RESULTS: A number of validation experiments were performed on Lactococcus lactis IL1403 amplicon-based DNA-microarrays. Using the validation scheme and ANOVA, the factors contributing to the variance in normalized DNA-microarray data were estimated. Day-to-day as well as experimenter-dependent variances were shown to contribute strongly to the variance, while dye and culturing had a relatively modest contribution to the variance. CONCLUSION: Even in cases where 90% of the data were kept for analysis and the experiments were performed under challenging conditions (e.g. on different days), the CV was at an acceptable 25%. Clustering experiments showed that trends can be reliably detected also from genes with very low expression levels. The validation scheme thus allows determining conditions that could be improved to yield even higher DNA-microarray data quality.


Asunto(s)
Biología Computacional/métodos , Genómica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Varianza , Bacillus subtilis/genética , Análisis por Conglomerados , Perfilación de la Expresión Génica/métodos , Lactococcus lactis/genética , Modelos Estadísticos , Control de Calidad , Reproducibilidad de los Resultados , Proyectos de Investigación
14.
Chest ; 122(1): 84-91, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12114342

RESUMEN

STUDY OBJECTIVE: To determine whether an exhalation valve designed to minimize rebreathing improves daytime or nocturnal gas exchange or improves symptoms compared with a traditional valve during nocturnal nasal ventilation delivered using a bilevel pressure ventilation device. DESIGN: Prospective direct comparison trial with each patient sequentially using both valves, during a 2-week run-in period with a traditional valve, a 2-week trial with the nonrebreathing valve, and a 2-week washout period with the traditional valve. SETTING: Outpatient pulmonary function laboratory and home nocturnal monitoring. PATIENTS: Seven patients who received long-term (> 1 year) nocturnal nasal bilevel pressure ventilation with an expiratory pressure of

Asunto(s)
Distrofias Musculares/terapia , Enfermedad Pulmonar Obstructiva Crónica/terapia , Respiración Artificial/métodos , Apnea Obstructiva del Sueño/terapia , Anciano , Análisis de los Gases de la Sangre , Diseño de Equipo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Intercambio Gaseoso Pulmonar , Respiración , Respiración Artificial/instrumentación , Pruebas de Función Respiratoria
15.
FEMS Microbiol Lett ; 239(1): 157-61, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15451114

RESUMEN

Lipid II is essential for nisin-mediated pore formation at nano-molar concentrations. We tested whether nisin resistance could result from different Lipid II levels, by comparing the maximal Lipid II pool in Micrococcus flavus (sensitive) and Listeria monocytogenes (relatively insensitive) and their nisin-resistant variants, with a newly developed method. No correlation was observed between the maximal Lipid II pool and nisin sensitivity, as was further corroborated by using spheroplasts of nisin-resistant and wild-type strains of M. flavus, which were equally sensitive to nisin.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Bacterias Grampositivas/efectos de los fármacos , Nisina/farmacología , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo , Listeria monocytogenes/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Micrococcus/efectos de los fármacos , Fosfatos de Poliisoprenilo/química , Uridina Difosfato Ácido N-Acetilmurámico/química
17.
Microbiology (Reading) ; 154(Pt 6): 1755-1762, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18524930

RESUMEN

Nisin is a post-translationally modified antimicrobial peptide produced by Lactococcus lactis which binds to lipid II in the membrane to form pores and inhibit cell-wall synthesis. A nisin-resistant (Nis(R)) strain of L. lactis, which is able to grow at a 75-fold higher nisin concentration than its parent strain, was investigated with respect to changes in the cell wall. Direct binding studies demonstrated that less nisin was able to bind to lipid II in the membranes of L. lactis Nis(R) than in the parent strain. In contrast to vancomycin binding, which showed ring-like binding, nisin was observed to bind in patches close to cell-division sites in both the wild-type and the Nis(R) strains. Comparison of modifications in lipoteichoic acid of the L. lactis strains revealed an increase in d-alanyl esters and galactose as substituents in L. lactis Nis(R), resulting in a less negatively charged cell wall. Moreover, the cell wall displays significantly increased thickness at the septum. These results indicate that shielding the membrane and thus the lipid II molecule, thereby decreasing abduction of lipid II and subsequent pore-formation, is a major defence mechanism of L. lactis against nisin.


Asunto(s)
Alanina/metabolismo , Pared Celular/metabolismo , Farmacorresistencia Bacteriana , Lactococcus lactis/efectos de los fármacos , Lactococcus lactis/metabolismo , Lipopolisacáridos/metabolismo , Nisina/farmacología , Ácidos Teicoicos/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , División Celular , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Lactococcus lactis/genética , Lactococcus lactis/crecimiento & desarrollo , Lipopolisacáridos/química , Microscopía Confocal , Microscopía Electrónica , Nisina/genética , Nisina/metabolismo , Ácidos Teicoicos/química , Vancomicina/metabolismo , Vancomicina/farmacología
18.
Mol Microbiol ; 65(2): 454-64, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17630974

RESUMEN

Proteins required for transformation of Bacillus subtilis and other competent bacteria are associated with the membrane or reside in the cytosol. Previous work has shown that RecA, ComGA, ComFA and SsbB are directed to the cell poles in competent cells, and that the uptake of transforming DNA occurs preferentially at the poles. We show that ComGA, ComFA, DprA (Smf), SsbB (YwpH), RecA and YjbF (CoiA) are located at the cell poles, where they appear to colocalize. Using fluorescence resonance energy transfer, we have shown that these six competent (Com) proteins reside in close proximity to one another. This conclusion was supported by the effects of com gene knockouts on the stabilities of Com proteins. Data obtained from the com gene knockout studies, as well as information from other sources, extend the list of proteins in the transformation complex to include ComEC and ComEA. Because ComGA and ComFA are membrane-associated, while DprA, SsbB, RecA and YjbF are soluble, a picture emerges of a large multiprotein polar complex, involving both cytosolic and membrane proteins. This complex mediates the binding and uptake of single-stranded DNA, the protection of this DNA from cellular nucleases and its recombination with the recipient chromosome.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Transformación Bacteriana , Bacillus subtilis/química , Bacillus subtilis/citología , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Transferencia Resonante de Energía de Fluorescencia , Proteínas de la Membrana/metabolismo , Fotoblanqueo
19.
Antimicrob Agents Chemother ; 50(5): 1753-61, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16641446

RESUMEN

Nisin, a posttranslationally modified antimicrobial peptide produced by Lactococcus lactis, is widely used as a food preservative. Yet, the mechanisms leading to the development of nisin resistance in bacteria are poorly understood. We used whole-genome DNA microarrays of L. lactis IL1403 to identify the factors underlying acquired nisin resistance mechanisms. The transcriptomes of L. lactis IL1403 and L. lactis IL1403 Nis(r), which reached a 75-fold higher nisin resistance level, were compared. Differential expression was observed in genes encoding proteins that are involved in cell wall biosynthesis, energy metabolism, fatty acid and phospholipid metabolism, regulatory functions, and metal and/or peptide transport and binding. These results were further substantiated by showing that several knockout and overexpression mutants of these genes had strongly altered nisin resistance levels and that some knockout strains could no longer become resistant to the same level of nisin as that of the wild-type strain. The acquired nisin resistance mechanism in L. lactis is complex, involving various different mechanisms. The four major mechanisms are (i) preventing nisin from reaching the cytoplasmic membrane, (ii) reducing the acidity of the extracellular medium, thereby stimulating the binding of nisin to the cell wall, (iii) preventing the insertion of nisin into the membrane, and (iv) possibly transporting nisin across the membrane or extruding nisin out of the membrane.


Asunto(s)
Antibacterianos/metabolismo , Regulación Bacteriana de la Expresión Génica , Lactococcus lactis/genética , Nisina/genética , Transcripción Genética , Antibacterianos/farmacología , ADN Bacteriano , Farmacorresistencia Bacteriana , Genes Bacterianos , Variación Genética , Genoma Bacteriano , Lactococcus lactis/efectos de los fármacos , Lactococcus lactis/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Genéticos , Mutación , Nisina/metabolismo , Nisina/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Operón , Plásmidos/genética
20.
Science ; 313(5793): 1636-7, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16973881

RESUMEN

Lantibiotics are polycyclic peptides containing unusual amino acids, which have binding specificity for bacterial cells, targeting the bacterial cell wall component lipid II to form pores and thereby lyse the cells. Yet several members of these lipid II-targeted lantibiotics are too short to be able to span the lipid bilayer and cannot form pores, but somehow they maintain their antibacterial efficacy. We describe an alternative mechanism by which members of the lantibiotic family kill Gram-positive bacteria by removing lipid II from the cell division site (or septum) and thus block cell wall synthesis.


Asunto(s)
Antibacterianos/farmacología , Bacillus/efectos de los fármacos , Bacteriocinas/metabolismo , Bacteriocinas/farmacología , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Antibacterianos/metabolismo , Bacillus/metabolismo , Bacillus/ultraestructura , Bacillus megaterium/efectos de los fármacos , Bacillus megaterium/metabolismo , Bacillus megaterium/ultraestructura , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestructura , Bacteriocinas/química , División Celular/efectos de los fármacos , Pared Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Membranas Artificiales , Nisina/química , Nisina/metabolismo , Nisina/farmacología , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Peptidoglicano/biosíntesis , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo , Vancomicina/metabolismo , Vancomicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA