Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Ann Oncol ; 34(3): 275-288, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36526124

RESUMEN

BACKGROUND: KEAP1 mutations have been associated with reduced survival in lung adenocarcinoma (LUAD) patients treated with immune checkpoint inhibitors (ICIs), particularly in the presence of STK11/KRAS alterations. We hypothesized that, beyond co-occurring genomic events, clonality prediction may help identify deleterious KEAP1 mutations and their counterparts with retained sensitivity to ICIs. PATIENTS AND METHODS: Beta-binomial modelling of sequencing read counts was used to infer KEAP1 clonal inactivation by combined somatic mutation and loss of heterozygosity (KEAP1 C-LOH) versus partial inactivation [KEAP1 clonal diploid-subclonal (KEAP1 CD-SC)] in the Memorial Sloan Kettering Cancer Center (MSK) MetTropism cohort (N = 2550). Clonality/LOH prediction was compared to a streamlined clinical classifier that relies on variant allele frequencies (VAFs) and tumor purity (TP) (VAF/TP ratio). The impact of this classification on survival outcomes was tested in two independent cohorts of LUAD patients treated with immunotherapy (MSK/Rome N = 237; DFCI N = 461). Immune-related features were studied by exploiting RNA-sequencing data (TCGA) and multiplexed immunofluorescence (DFCI mIF cohort). RESULTS: Clonality/LOH inference in the MSK MetTropism cohort overlapped with a clinical classification model defined by the VAF/TP ratio. In the ICI-treated MSK/Rome discovery cohort, predicted KEAP1 C-LOH mutations were associated with shorter progression-free survival (PFS) and overall survival (OS) compared to KEAP1 wild-type cases (PFS log-rank P = 0.001; OS log-rank P < 0.001). Similar results were obtained in the DFCI validation cohort (PFS log-rank P = 0.006; OS log-rank P = 0.014). In both cohorts, we did not observe any significant difference in survival outcomes when comparing KEAP1 CD-SC and wild-type tumors. Immune deconvolution and multiplexed immunofluorescence revealed that KEAP1 C-LOH and KEAP1 CD-SC differed for immune-related features. CONCLUSIONS: KEAP1 C-LOH mutations are associated with an immune-excluded phenotype and worse clinical outcomes among advanced LUAD patients treated with ICIs. By contrast, survival outcomes of patients whose tumors harbored KEAP1 CD-SC mutations were similar to those with KEAP1 wild-type LUADs.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , Mutación , Pérdida de Heterocigocidad , Inmunoterapia
2.
Ann Oncol ; 31(12): 1746-1754, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32866624

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs) have demonstrated significant overall survival (OS) benefit in lung adenocarcinoma (LUAD). Nevertheless, a remarkable interpatient heterogeneity characterizes immunotherapy efficacy, regardless of programmed death-ligand 1 (PD-L1) expression and tumor mutational burden (TMB). KEAP1 mutations are associated with shorter survival in LUAD patients receiving chemotherapy. We hypothesized that the pattern of KEAP1 co-mutations and mutual exclusivity may identify LUAD patients unresponsive to immunotherapy. PATIENTS AND METHODS: KEAP1 mutational co-occurrences and somatic interactions were studied in the whole MSKCC LUAD dataset. The impact of coexisting alterations on survival outcomes in ICI-treated LUAD patients was verified in the randomized phase II/III POPLAR/OAK trials (blood-based sequencing, bNGS cohort, N = 253). Three tissue-based sequencing studies (Rome, MSKCC and DFCI) were used for independent validation (tNGS cohort, N = 289). Immunogenomic features were analyzed using The Cancer Genome Atlas (TCGA) LUAD study. RESULTS: On the basis of KEAP1 mutational co-occurrences, we identified four genes potentially associated with reduced efficacy of immunotherapy (KEAP1, PBRM1, SMARCA4 and STK11). Independent of the nature of co-occurring alterations, tumors with coexisting mutations (CoMut) had inferior survival as compared with single-mutant (SM) and wild-type (WT) tumors (bNGS cohort: CoMut versus SM log-rank P = 0.048, CoMut versus WT log-rank P < 0.001; tNGS cohort: CoMut versus SM log-rank P = 0.037, CoMut versus WT log-rank P = 0.006). The CoMut subset harbored higher TMB than the WT disease and the adverse significance of coexisting alterations was maintained in LUAD with high TMB. Significant immunogenomic differences were observed between the CoMut and WT groups in terms of core immune signatures, T-cell receptor repertoire, T helper cell signatures and immunomodulatory genes. CONCLUSIONS: This study indicates that coexisting alterations in a limited set of genes characterize a subset of LUAD unresponsive to immunotherapy and with high TMB. An immune-cold microenvironment may account for the clinical course of the disease.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Ensayos Clínicos Fase II como Asunto , Ensayos Clínicos Fase III como Asunto , Humanos , Inmunoterapia , Proteína 1 Asociada A ECH Tipo Kelch/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Mutación , Factor 2 Relacionado con NF-E2 , Ensayos Clínicos Controlados Aleatorios como Asunto , Microambiente Tumoral
3.
Biomark Res ; 9(1): 57, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34256855

RESUMEN

BACKGROUND: In Western countries, ovarian cancer (OC) still represents the leading cause of gynecological cancer-related deaths, despite the remarkable gains in therapeutical options. Novel biomarkers of early diagnosis, prognosis definition and prediction of treatment outcomes are of pivotal importance. Prior studies have shown the potentials of micro-ribonucleic acids (miRNAs) as biomarkers for OC and other cancers. METHODS: We focused on the prognostic and/or predictive potential of miRNAs in OC by conducting a comprehensive array profiling of miRNA expression levels in ovarian tissue samples from 17 non-neoplastic controls, and 60 tumor samples from OC patients treated at the Regina Elena National Cancer Institute (IRE). A set of 54 miRNAs with differential expression in tumor versus normal samples (T/N-deregulated) was identified in the IRE cohort and validated against data from the Cancer Genoma Atlas (TCGA) related to 563 OC patients and 8 non-neoplastic controls. The prognostic/predictive role of the selected 54 biomarkers was tested in reference to survival endpoints and platinum resistance (P-res). RESULTS: In the IRE cohort, downregulation of the 2 miRNA-signature including miR-99a-5p and miR-320a held a negative prognostic relevance, while upregulation of miR-224-5p was predictive of less favorable event free survival (EFS) and P-res. Data from the TCGA showed that downregulation of 5 miRNAs, i.e., miR-150, miR-30d, miR-342, miR-424, and miR-502, was associated with more favorable EFS and overall survival outcomes, while miR-200a upregulation was predictive of P-res. The 9 miRNAs globally identified were all included into a single biologic signature, which was tested in enrichment analysis using predicted/validated miRNA target genes, followed by network representation of the miRNA-mRNA interactions. CONCLUSIONS: Specific dysregulated microRNA sets in tumor tissue showed predictive/prognostic value in OC, and resulted in a promising biological signature for this disease.

4.
J Hematol Oncol ; 12(1): 111, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31665051

RESUMEN

Breast cancer (BC) is a complex disease with primary or acquired incurability characteristics in a significant part of patients. Immunotherapeutical agents represent an emerging option for breast cancer treatment, including the human epidermal growth factor 2 positive (HER2+) subtype. The immune system holds the ability to spontaneously implement a defensive response against HER2+ BC cells through complex mechanisms which can be exploited to modulate this response for obtaining a clinical benefit. Initial immune system modulating strategies consisted mostly in vaccine therapies, which are still being investigated and improved. However, the entrance of trastuzumab into the scenery of HER2+ BC treatment was the real game changing event, which embodied a dominant immune-mediated mechanism. More recently, the advent of the immune checkpoint inhibitors has caused a new paradigm shift for immuno-oncology, with promising initial results also for HER2+ BC. Breast cancer has been traditionally considered poorly immunogenic, being characterized by relatively low tumor mutation burden (TMB). Nevertheless, recent evidence has revealed high tumor infiltrating lymphocytes (TILs) and programmed cell death-ligand 1 (PD-L1) expression in a considerable proportion of HER2+ BC patients. This may translate into a higher potential to elicit anti-cancer response and, therefore, wider possibilities for the use and implementation of immunotherapy in this subset of BC patients. We are herein presenting and critically discussing the most representative evidence concerning immunotherapy in HER2+ BC cancer, both singularly and in combination with therapeutic agents acting throughout HER2-block, immune checkpoint inhibition and anti-cancer vaccines. The reader will be also provided with hints concerning potential future projection of the most promising immutherapeutic agents and approaches for the disease of interest.


Asunto(s)
Neoplasias de la Mama/terapia , Predisposición Genética a la Enfermedad , Inmunoterapia , Receptor ErbB-2/genética , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/genética , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA