Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Phys Chem A ; 127(42): 8794-8805, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37824697

RESUMEN

The ultrafast dynamics of charge carriers in organic donor-acceptor interfaces are of primary importance to understanding the fundamental properties of these systems. In this work, we focus on a charge-transfer complex formed by quaterthiophene p-doped by tetrafluoro-tetracyanoquinodimethane and investigate electron dynamics and vibronic interactions also at finite temperatures by applying a femtosecond pulse in resonance with the two lowest energy excitations of the system with perpendicular and parallel polarization with respect to the interface. The adopted ab initio formalism based on real-time time-dependent density-functional theory coupled to Ehrenfest dynamics enables monitoring the dynamical charge transfer across the interface and assessing the role played by the nuclear motion. Our results show that the strong intermolecular interactions binding the complex already in the ground state influence the dynamics, too. The analysis of the nuclear motion involved in these processes reveals the participation of different vibrational modes depending on the electronic states stimulated by the resonant pulse. Coupled donor-acceptor modes mostly influence the excited state polarized across the interface, while intramolecular vibrations in the donor molecule dominate the excitation in the orthogonal direction. The results obtained at finite temperatures are overall consistent with this picture, although thermal disorder contributes to slightly decreasing interfacial charge transfer.

2.
Phys Chem Chem Phys ; 24(27): 16671-16679, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35766517

RESUMEN

The design of low-dimensional organic-inorganic interfaces for the next generation of opto-electronic applications requires in-depth understanding of the microscopic mechanisms ruling electronic interactions in these systems. In this work, we present a first-principles study based on density-functional theory inspecting the structural, energetic, and electronic properties of five molecular donors and acceptors adsorbed on freestanding hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2) monolayers. All considered interfaces are stable, due to the crucial contribution of dispersion interactions, which are maximized by the overall flat arrangement of the physisorbed molecules on both substrates. The level alignment of the hybrid systems depends on the characteristics of the constituents. On hBN, both type-I and type-II interfaces may form, depending on the relative energies of the frontier orbitals with respect to the vacuum level. On the other hand, all MoS2-based hybrid systems exhibit a type-II level alignment, with the molecular frontier orbitals positioned across the energy gap of the semiconductor. The electronic structure of the hybrid materials is further determined by the formation of interfacial dipole moments and by the wave-function hybridization between the organic and inorganic constituents. These results provide important indications for the design of novel low-dimensional hybrid materials with suitable characteristics for opto-electronics.

3.
Phys Chem Chem Phys ; 23(8): 4841-4855, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33605967

RESUMEN

The first-principles simulation of the electronic structure of organic semiconductors in solution poses a number of challenges that are not trivial to address simultaneously. In this work, we investigate the effects and the mutual interplay of solvation, alkylization, and doping on the structural, electronic, and optical properties of sexithiophene, a representative organic semiconductor molecule. To this end, we employ (time-dependent) density functional theory in conjunction with the polarizable-continuum model. We find that the torsion between adjacent monomer units plays a key role, as it strongly influences the electronic structure of the molecule, including energy gap, ionization potential, and band widths. Alkylization promotes delocalization of the molecular orbitals up to the first methyl unit, regardless of the chain length, leading to an overall shift of the energy levels. The alterations in the electronic structure are reflected in the optical absorption, which is additionally affected by dynamical solute-solvent interactions. Taking all these effects into account, solvents decrease the optical gap by an amount that depends on its polarity, and concomitantly increase the oscillator strength of the first excitation. The interaction with a dopant molecule promotes planarization. In such scenario, solvation and alkylization enhance charge transfer both in the ground state and in the excited state.

4.
J Phys Chem A ; 125(44): 9619-9631, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34714646

RESUMEN

Among polycyclic aromatic hydrocarbons, pyrene is widely used as an optical probe thanks to its peculiar ultraviolet absorption and infrared emission features. Interestingly, this molecule is also an abundant component of the interstellar medium, where it is detected via its unique spectral fingerprints. In this work, we present a comprehensive first-principles study on the electronic and vibrational response of pyrene and its cation to ultrafast, coherent pulses in resonance with their optically active excitations in the ultraviolet region. The analysis of molecular symmetries, electronic structure, and linear optical spectra is used to interpret transient absorption spectra and kinetic energy spectral densities computed for the systems excited by ultrashort laser fields. By disentangling the effects of the electronic and vibrational dynamics via ad hoc simulations with stationary and moving ions, and, in specific cases, with the aid of auxiliary model systems, we rationalize that the nuclear motion is mainly harmonic in the neutral species, while strong anharmonic oscillations emerge in the cation, driven by electronic coherence. Our results provide additional insights into the ultrafast vibronic dynamics of pyrene and related compounds and set the stage for future investigations on more complex carbon-conjugated molecules.

5.
J Chem Phys ; 154(22): 224114, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34241221

RESUMEN

We present LayerPCM, an extension of the polarizable-continuum model coupled to real-time time-dependent density-functional theory, for an efficient and accurate description of the electrostatic interactions between molecules and multilayered dielectric substrates on which they are physisorbed. The former are modeled quantum-mechanically, while the latter are treated as polarizable continua characterized by their dielectric constants. The proposed approach is purposely designed to simulate complex hybrid heterostructures with nano-engineered substrates including a stack of anisotropic layers. LayerPCM is suitable for describing the polarization-induced renormalization of frontier energy levels of the adsorbates in the static regime. Moreover, it can be reliably applied to simulating laser-induced ultrafast dynamics of molecules through the inclusion of electric fields generated by Fresnel-reflection at the substrate. Depending on the complexity of the underlying layer structure, such reflected fields can assume non-trivial shapes and profoundly affect the dynamics of the photo-excited charge carriers in the molecule. In particular, the interaction with the substrate can give rise to strong delayed fields, which lead to interference effects resembling those of multi-pulse-based spectroscopy. The robustness of the implementation and the above-mentioned features are demonstrated with a number of examples, ranging from intuitive models to realistic systems.

6.
J Chem Phys ; 153(5): 054106, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32770886

RESUMEN

Real-time time-dependent density functional theory, in conjunction with the Ehrenfest molecular dynamics scheme, is becoming a popular methodology to investigate ultrafast phenomena on the nanoscale. Thanks to recent developments, it is also possible to explicitly include in the simulations a time-dependent laser pulse, thereby accessing the transient excitation regime. However, the complexity entailed in these calculations calls for in-depth analysis of the accessible and yet approximate (either "dressed" or "bare") quantities in order to evaluate their ability to provide us with a realistic picture of the simulated processes. In this work, we analyze the ultrafast dynamics of three small molecules (ethylene, benzene, and thiophene) excited by a resonant laser pulse in the framework of the adiabatic local-density approximation. The electronic response to the laser perturbation in terms of induced dipole moment and excited-state population is compared to the results given by an exactly solvable two-level model. In this way, we can interpret the charge-carrier dynamics in terms of simple estimators, such as the number of excited electrons. From the computed transient absorption spectra, we unravel the appearance of nonlinear effects such as excited-state absorption and vibronic coupling. In this way, we observe that the laser excitation affects the vibrational spectrum by enhancing the anharmonicities therein, while the coherent vibrational motion contributes to stabilizing the electronic excitation already within a few tens of femtoseconds.

7.
J Phys Chem Lett ; 15(20): 5350-5358, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38728611

RESUMEN

Understanding the electronic structure of mixed-dimensional heterostructures is essential for maximizing their application potential. However, accurately modeling such interfaces is challenging due to the complex interplay between the subsystems. We employ a computational framework integrating first-principles methods, including GW, density functional theory (DFT), and the polarizable continuum model, to elucidate the electronic structure of mixed-dimensional heterojunctions formed by free-base phthalocyanines and monolayer molybdenum disulfide. We assess the impact of dielectric screening across various scenarios, from isolated molecules to organic films on a substrate-supported monolayer. Our findings show that while polarization effects cause significant renormalization of molecular energy levels, band energies and alignments in the most relevant setup can be accurately predicted through DFT simulations of the individual subsystems. Additionally, we analyze orbital hybridization, revealing potential pathways for interfacial charge transfer. This study offers new insights into hybrid inorganic/organic interfaces and provides a practical computational protocol suitable for scaled-up studies.

8.
ACS Photonics ; 11(2): 586-595, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38405397

RESUMEN

Single-photon emission from monolayer transition metal dichalcogenides requires the existence of localized, atom-like states within the extended material. Here, we predict from first-principles the existence of quantum dots around atomic-scale protrusions, which result from substrate roughness or particles trapped between layers. Using density functional theory, we find such deformations to give rise to local membrane stretching and curvature, which lead to the emergence of gap states. Having enhanced outer-surface localization, they are prone to mixing with states pertaining to chalcogen vacancies and adsorbates. If the deformation is sharp, the conduction band minimum furthermore assumes atomic and valley-mixed character, potentially enabling quantum light emission. When such structural defects are arranged in an array, the new states couple to form energetically separated sub-bands, holding promise for intriguing superlattice dynamics. All of the observed features are shown to be closely linked to elastic, deformation-induced intra- and intervalley scattering processes.

9.
Nanoscale ; 16(14): 7134-7144, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38501908

RESUMEN

Mechanical deformations, either spontaneously occurring during sample preparation or purposely induced in their nanoscale manipulation, drastically affect the electronic and optical properties of transition metal dichalcogenide monolayers. In this first-principles work based on density-functional theory, we shed light on the interplay among strain, curvature, and electronic structure of MoSe2 nanowrinkles. We analyze their structural properties highlighting the effects of coexisting local domains of tensile and compressive strain in the same system. By contrasting the band structures of the nanowrinkles against counterparts obtained for flat monolayers subject to the same amount of strain, we clarify that the specific features of the former, such as the moderate variation of the band-gap size and its persisting direct nature, are ruled by curvature rather than strain. The analysis of the wave-function distribution indicates strain-dependent localization of the frontier states in the conduction region while in the valence, the sensitivity to strain is much less pronounced. The discussion about transport properties, based on inspection of the effective masses, reveals excellent perspectives for these systems as active components for (opto)electronic devices.

10.
J Phys Chem B ; 124(35): 7694-7708, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32574055

RESUMEN

The mechanism and the nature of the species formed by molecular doping of the model polymer poly(3-hexylthiophene) (P3HT) in its regioregular (rre-) and regiorandom (rra-) forms in solution are investigated for three different dopants: the prototypical π-electron acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), the strong Lewis acid tris(pentafluorophenyl)borane (BCF), and the strongly oxidizing complex molybdenum tris[1-(methoxycarbonyl)-2-(trifluoromethyl)ethane-1,2-dithiolene] (Mo(tfd-CO2Me)3). In a combined optical and electron paramagnetic resonance study, we show that the doping of rreP3HT in solution occurs by integer charge transfer, resulting in formation of P3HT radical cations (polarons) for all of the dopants considered here. Remarkably, despite the different chemical nature of the dopants and dopant-polymer interaction, the formed polarons exhibit essentially identical optical absorption spectra. The situation is very different for the doping of rraP3HT, where we observe formation of a charge-transfer complex with F4TCNQ and of a "localized" P3HT polaron on nonaggregated chains upon doping with BCF, while there is no indication of dopant-induced species in the case of Mo(tfd-CO2Me)3. We estimate the ionization efficiency of the respective dopants for the two polymers in solution and report the molar extinction coefficient spectra of the three different species. Finally, we observe increased spin delocalization in regioregular compared to regiorandom P3HT by electron nuclear double resonance, suggesting that the ability of the charge to delocalize on aggregates of planarized polymer backbones plays a significant role in determining the doping mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA