Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 83(21)2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28842544

RESUMEN

Whooping cough is a highly contagious respiratory disease caused by Bordetella pertussis Despite widespread vaccination, its incidence has been rising alarmingly, and yet, the physiology of B. pertussis remains poorly understood. We combined genome-scale metabolic reconstruction, a novel optimization algorithm, and experimental data to probe the full metabolic potential of this pathogen, using B. pertussis strain Tohama I as a reference. Experimental validation showed that B. pertussis secretes a significant proportion of nitrogen as arginine and purine nucleosides, which may contribute to modulation of the host response. We also found that B. pertussis can be unexpectedly versatile, being able to metabolize many compounds while displaying minimal nutrient requirements. It can grow without cysteine, using inorganic sulfur sources, such as thiosulfate, and it can grow on organic acids, such as citrate or lactate, as sole carbon sources, providing in vivo demonstration that its tricarboxylic acid (TCA) cycle is functional. Although the metabolic reconstruction of eight additional strains indicates that the structural genes underlying this metabolic flexibility are widespread, experimental validation suggests a role of strain-specific regulatory mechanisms in shaping metabolic capabilities. Among five alternative strains tested, three strains were shown to grow on substrate combinations requiring a functional TCA cycle, but only one strain could use thiosulfate. Finally, the metabolic model was used to rationally design growth media with >2-fold improvements in pertussis toxin production. This study thus provides novel insights into B. pertussis physiology and highlights the potential, but also the limitations, of models based solely on metabolic gene content.IMPORTANCE The metabolic capabilities of Bordetella pertussis, the causative agent of whooping cough, were investigated from a systems-level perspective. We constructed a comprehensive genome-scale metabolic model for B. pertussis and challenged its predictions experimentally. This systems approach shed light on new potential host-microbe interactions and allowed us to rationally design novel growth media with >2-fold improvements in pertussis toxin production. Most importantly, we also uncovered the potential for metabolic flexibility of B. pertussis (significantly larger range of substrates than previously alleged; novel active pathways allowing growth in minimal, nearly mineral nutrient combinations where only the carbon source must be organic), although our results also highlight the importance of strain-specific regulatory determinants in shaping metabolic capabilities. Deciphering the underlying regulatory mechanisms appears to be crucial for a comprehensive understanding of B. pertussis's lifestyle and the epidemiology of whooping cough. The contribution of metabolic models in this context will require the extension of the genome-scale metabolic model to integrate this regulatory dimension.

2.
FASEB J ; 26(2): 738-47, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22034653

RESUMEN

The ATP-binding cassette (ABC) genes encode the largest family of transmembrane proteins. ABC transporters translocate a wide variety of substrates across membranes, but their physiological function is often incompletely understood. We describe a new method to study the substrate spectrum of ABC transporters: We incubate extracts of mouse urine with membrane vesicles prepared from Spodoptera frugiperda Sf9 insect cells overproducing an ABC transporter and determine the compounds transported into the vesicles by LC/MS-based metabolomics. We illustrate the power of this simple "transportomics" approach using ABCC2, a protein present at sites of uptake and elimination. We identified many new substrates of ABCC2 in urine. These included glucuronides of plant-derived xenobiotics, a class of compounds to which humans are exposed on a daily basis. Moreover, we show that the excretion of these compounds in vivo depends on ABCC2: compared to wild-type mice, the urinary excretion of several glucuronides was increased up to 20-fold in Abcc2(-/-) mice. Transportomics has broad applicability, as it is not restricted to urine and can be applied to other ATP-dependent transport proteins as well.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Animales , Transporte Biológico Activo , Líquidos Corporales/metabolismo , Glucurónidos/metabolismo , Glucurónidos/orina , Humanos , Cinética , Metaboloma , Ratones , Ratones Noqueados , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/deficiencia , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Fitoestrógenos/metabolismo , Fitoestrógenos/orina , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenobióticos/metabolismo , Xenobióticos/orina
3.
Toxicol In Vitro ; 22(5): 1356-60, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18434077

RESUMEN

Synthetic caspase inhibitors and particularly broad-spectrum caspase inhibitors can prevent cells from death or at least slow down cell death process and abrogate some apoptotic hallmarks [Kitanaka, C., Kuchino, Y., 1999. Caspase-independent programmed cell death with necrotic morphology. Cell Death and Differentiation 6, 508-515]. However, not all synthetic caspase inhibitors diminish cell death. We have found that the broad-spectrum caspase inhibitor Boc-Asp-CMK induced cell death at micromolar concentrations in human leukaemia cells. Interestingly, low concentrations of Boc-Asp-CMK induced cell death with apoptotic hallmarks. Increasing concentrations of Boc-Asp-CMK led to necrotic cell death. The switch between apoptosis and necrosis seemed to depend upon the degree of inhibition of executioner caspases, including caspase-3/7 with Boc-Asp-CMK. Interestingly, caspase-3 processing was not inhibited even for the highest concentration of Boc-Asp-CMK used. We assume, that toxic properties of Boc-Asp-CMK can be attributed to the chloromethylketone residuum in its molecule, as its analogue Boc-Asp-FMK with fluoromethylketone residuum was more than 13 times less toxic. Our results further indicated that toxicity of Boc-Asp-CMK might arise from its interference with mitochondrial metabolism.


Asunto(s)
Clorometilcetonas de Aminoácidos/farmacología , Apoptosis/efectos de los fármacos , Inhibidores de Caspasas , Inhibidores Enzimáticos/farmacología , Caspasa 3/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Consumo de Oxígeno/efectos de los fármacos , Células U937/enzimología , Células U937/patología
4.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(21): 1875-80, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21641880

RESUMEN

A sensitive assay for direct determination of intracellular level of daunorubicin (DRN) in resistant leukemia cells with overexpressed P-glycoprotein has been developed. This assay is based on a rapid separation of cells from media and fast cut-off of DRN transportation by centrifugation of cells through a layer of silicone oil. Cell pellets were extracted using 1% (v/v) formic acid in 50% (v/v) ethanol in water. The cell extracts were subsequently analysed by liquid chromatography (HPLC) coupled a low-energy collision tandem mass spectrometer equipped with an electrospray ionization source (ESI-CID-MS/MS) operated in the multiple-reaction monitoring (MRM) mode. Calibration curve was linear from 0.4 to 250nM with correlation coefficient (r²) better than 0.998. The limit of quantitation (LOQ) was 0.4 nM. The assay has been successfully applied to a determination of intracellular content of daunorubicin in sensitive K562 and resistant K562/Dox and K562/HHT300 cells.


Asunto(s)
Daunorrubicina/análisis , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Antibióticos Antineoplásicos/análisis , Antibióticos Antineoplásicos/farmacocinética , ADN de Neoplasias/análisis , Daunorrubicina/farmacocinética , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Citometría de Flujo , Fluorescencia , Humanos , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Células K562 , Modelos Lineales , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA