Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 19(46): e2303862, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37452406

RESUMEN

In recent years, many metal oxides have been rigorously studied to be employed as solid electrolytes for resistive switching (RS) devices. Among these solid electrolytes, lanthanum oxide (La2 O3 ) is comparatively less explored for RS applications. Given this, the present work focuses on the electrodeposition of La2 O3 switching layers and the investigation of their RS properties for memory and neuromorphic computing applications. Initially, the electrodeposited La2 O3 switching layers are thoroughly characterized by various analytical techniques. The electrochemical impedance spectroscopy (EIS) and Mott-Schottky techniques are probed to understand the in situ electrodeposition, RS mechanism, and n-type semiconducting nature of the fabricated La2 O3 switching layers. All the fabricated devices exhibit bipolar RS characteristics with excellent endurance and stable retention. Moreover, the device mimics the various bio-synaptic properties such as potentiation-depression, excitatory post-synaptic currents, and paired-pulse facilitation. It is demonstrated that the fabricated devices are non-ideal memristors based on double-valued charge-flux characteristics. The switching variation of the device is studied using the Weibull distribution technique and modeled and predicted by the time series analysis technique. Based on electrical and EIS results, a possible filamentary-based RS mechanism is suggested. The present results assert that La2 O3 is a promising solid electrolyte for memory and brain-inspired applications.

2.
Adv Sci (Weinh) ; : e2405251, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958496

RESUMEN

The pursuit of advanced brain-inspired electronic devices and memory technologies has led to explore novel materials by processing multimodal and multilevel tailored conductive properties as the next generation of semiconductor platforms, due to von Neumann architecture limits. Among such materials, antimony sulfide (Sb2S3) thin films exhibit outstanding optical and electronic properties, and therefore, they are ideal for applications such as thin-film solar cells and nonvolatile memory systems. This study investigates the conduction modulation and memory functionalities of Sb2S3 thin films deposited via the vapor transport deposition technique. Experimental results indicate that the Ag/Sb2S3/Pt device possesses properties suitable for memory applications, including low operational voltages, robust endurance, and reliable switching behavior. Further, the reproducibility and stability of these properties across different device batches validate the reliability of these devices for practical implementation. Moreover, Sb2S3-based memristors exhibit artificial neuroplasticity with prolonged stability, promising considerable advancements in neuromorphic computing. Leveraging the photosensitivity of Sb2S3 enables the Ag/Sb2S3/Pt device to exhibit significant low operating potential and conductivity modulation under optical stimulation for memory applications. This research highlights the potential applications of Sb2S3 in future memory devices and optoelectronics and in shaping electronics with versatility.

3.
ACS Appl Bio Mater ; 6(5): 1763-1773, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36976913

RESUMEN

We report a memory device based on organic-inorganic hybrid cellulose-Ti3C2TX MXene composite hydrogel (CMCH) as a switching layer sandwiched between Ag top and FTO bottom electrodes. The device (Ag/CMCH/FTO) was fabricated by a simple, solution-processed route and exhibits reliable and reproducible bipolar resistive switching. Multilevel switching behavior was observed at low operating voltages (±0.5 to ±1 V). Furthermore, the capacitive-coupled memristive characteristics of the device were corroborated with electrochemical impedance spectroscopy and this affirmed the filamentary conduction switching mechanism (LRS-HRS). The synaptic functions of the CMCH-based memory device were evaluated, wherein potentiation/depression properties over 8 × 103 electric pulses were observed. The device also exhibited spike time-dependent plasticity-based symmetric Hebbian learning rule of a biological synapse. This hybrid hydrogel is expected to be a potential switching material for low-cost, sustainable, and biocompatible memory storage devices and artificial synaptic applications.


Asunto(s)
Celulosa , Hidrogeles , Citoesqueleto , Sinapsis
4.
Nanomaterials (Basel) ; 13(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37368309

RESUMEN

Resistive-switching-based memory devices meet most of the requirements for use in next-generation information and communication technology applications, including standalone memory devices, neuromorphic hardware, and embedded sensing devices with on-chip storage, due to their low cost, excellent memory retention, compatibility with 3D integration, in-memory computing capabilities, and ease of fabrication. Electrochemical synthesis is the most widespread technique for the fabrication of state-of-the-art memory devices. The present review article summarizes the electrochemical approaches that have been proposed for the fabrication of switching, memristor, and memristive devices for memory storage, neuromorphic computing, and sensing applications, highlighting their various advantages and performance metrics. We also present the challenges and future research directions for this field in the concluding section.

5.
Sci Rep ; 13(1): 4905, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966189

RESUMEN

In the present study, various statistical and machine learning (ML) techniques were used to understand how device fabrication parameters affect the performance of copper oxide-based resistive switching (RS) devices. In the present case, the data was collected from copper oxide RS devices-based research articles, published between 2008 to 2022. Initially, different patterns present in the data were analyzed by statistical techniques. Then, the classification and regression tree algorithm (CART) and decision tree (DT) ML algorithms were implemented to get the device fabrication guidelines for the continuous and categorical features of copper oxide-based RS devices, respectively. In the next step, the random forest algorithm was found to be suitable for the prediction of continuous-type features as compared to a linear model and artificial neural network (ANN). Moreover, the DT algorithm predicts the performance of categorical-type features very well. The feature importance score was calculated for each continuous and categorical feature by the gradient boosting (GB) algorithm. Finally, the suggested ML guidelines were employed to fabricate the copper oxide-based RS device and demonstrated its non-volatile memory properties. The results of ML algorithms and experimental devices are in good agreement with each other, suggesting the importance of ML techniques for understanding and optimizing memory devices.

6.
Nanoscale ; 15(23): 9891-9926, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37097309

RESUMEN

Since the discovery of graphene, two-dimensional (2D) materials have gained widespread attention, owing to their appealing properties for various technological applications. Etched from their parent MAX phases, MXene is a newly emerged 2D material that was first reported in 2011. Since then, a lot of theoretical and experimental work has been done on more than 30 MXene structures for various applications. Given this, in the present review, we have tried to cover the multidisciplinary aspects of MXene including its structures, synthesis methods, and electronic, mechanical, optoelectronic, and magnetic properties. From an application point of view, we explore MXene-based supercapacitors, gas sensors, strain sensors, biosensors, electromagnetic interference shielding, microwave absorption, memristors, and artificial synaptic devices. Also, the impact of MXene-based materials on the characteristics of respective applications is systematically explored. This review provides the current status of MXene nanomaterials for various applications and possible future developments in this field.


Asunto(s)
Grafito , Nanoestructuras , Electrónica , Microondas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA