Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Brain ; 145(1): 194-207, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-34245240

RESUMEN

Spreading depolarizations are highly prevalent and spatiotemporally punctuated events worsening the outcome of brain injury. Trigger factors are poorly understood but may be linked to sudden worsening in supply-demand mismatch in compromised tissue. Sustained or transient elevations in intracranial pressure are also prevalent in the injured brain. Here, using a mouse model of large hemispheric ischaemic stroke, we show that mild and brief intracranial pressure elevations (20 or 30 mmHg for just 3 min) potently trigger spreading depolarizations in ischaemic penumbra (4-fold increase in spreading depolarization occurrence). We also show that 30 mmHg intracranial pressure spikes as brief as 30 s are equally effective. In contrast, sustained intracranial pressure elevations to the same level for 30 min do not significantly increase the spreading depolarization rate, suggesting that an abrupt disturbance in the steady state equilibrium is required to trigger a spreading depolarization. Laser speckle flowmetry consistently showed a reduction in tissue perfusion, and two-photon pO2 microscopy revealed a drop in venous pO2 during the intracranial pressure spikes suggesting increased oxygen extraction fraction, and therefore, worsening supply-demand mismatch. These haemodynamic changes during intracranial pressure spikes were associated with highly reproducible increases in extracellular potassium levels in penumbra. Consistent with the experimental data, a higher rate of intracranial pressure spikes was associated with spreading depolarization clusters in a retrospective series of patients with aneurysmal subarachnoid haemorrhage with strong temporal correspondence. Altogether, our data show that intracranial pressure spikes, even when mild and brief, are capable of triggering spreading depolarizations. Aggressive prevention of intracranial pressure spikes may help reduce spreading depolarization occurrence and improve outcomes after brain injury.


Asunto(s)
Isquemia Encefálica , Depresión de Propagación Cortical , Accidente Cerebrovascular , Isquemia Encefálica/complicaciones , Humanos , Presión Intracraneal , Estudios Retrospectivos
2.
Stroke ; 53(7): 2369-2376, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35656825

RESUMEN

BACKGROUND: Subcortical white matter lesions are exceedingly common in cerebral small vessel disease and lead to significant cumulative disability without an available treatment. Here, we tested a rho-kinase inhibitor on functional recovery after focal white matter injury. METHODS: A focal corpus callosum lesion was induced by stereotactic injection of N5-(1-iminoethyl)-L-ornithine in mice. Fasudil (10 mg/kg) or vehicle was administered daily for 2 weeks, starting one day after lesion induction. Resting-state functional connectivity and grid walk performance were studied longitudinally, and lesion volumes were determined at one month. RESULTS: Resting-state interhemispheric functional connectivity significantly recovered between days 1 and 14 in the fasudil group (P<0.001), despite worse initial connectivity loss than vehicle before treatment onset. Grid walk test revealed an increased number of foot faults in the vehicle group compared with baseline, which persisted for at least 4 weeks. In contrast, the fasudil arm did not show an increase in foot faults and had smaller lesions at 4 weeks. Immunohistochemical examination of reactive astrocytosis, synaptic density, and mature oligodendrocytes did not reveal a significant difference between treatment arms. CONCLUSIONS: These data show that delayed fasudil posttreatment improves functional outcomes after a focal subcortical white matter lesion in mice. Future work will aim to elucidate the mechanisms.


Asunto(s)
Leucoaraiosis , Sustancia Blanca , Animales , Cuerpo Calloso , Humanos , Ratones , Recuperación de la Función , Quinasas Asociadas a rho
3.
Cereb Cortex ; 31(11): 4958-4969, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34037216

RESUMEN

The corpus callosum is the largest white matter tract and critical for interhemispheric connectivity. Unfortunately, neurocognitive deficits after experimental white matter lesions are subtle and variable, limiting their translational utility. We examined resting state functional connectivity (RSFC) as a surrogate after a focal lesion in the lateral corpus callosum induced by stereotaxic injection of L-NIO in mice. RSFC was performed via optical intrinsic signal imaging through intact skull before and on days 1 and 14 after injection, using interhemispheric homotopic and seed-based temporal correlation maps. We measured the lesion volumes at 1 month in the same cohort. L-NIO induced focal lesions in the corpus callosum. Interhemispheric homotopic connectivity decreased by up to 50% 24 h after L-NIO, partially sparing the visual cortex. All seeds showed loss of connectivity to the contralateral hemisphere. Moreover, ipsilesional motor and visual cortices lost connectivity within the same hemisphere. Sham-operated mice did not show any lesion or connectivity changes. RSFC imaging reliably detects acute disruption of long interhemispheric and intrahemispheric connectivity after a corpus callosum lesion in mice. This noninvasive method can be a functional surrogate to complement neurocognitive testing in both therapeutic and recovery studies after white matter injury.


Asunto(s)
Sustancia Blanca , Animales , Cuerpo Calloso/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Ratones , Imagen Óptica , Sustancia Blanca/diagnóstico por imagen
4.
Microcirculation ; 28(5): e12687, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33615601

RESUMEN

Recent advancements in multiphoton imaging and vascular reconstruction algorithms have increased the amount of data on cerebrovascular circulation for statistical analysis and hemodynamic simulations. Experimental observations offer fundamental insights into capillary network topology but mainly within a narrow field of view typically spanning a small fraction of the cortical surface (less than 2%). In contrast, larger-resolution imaging modalities, such as computed tomography (CT) or magnetic resonance imaging (MRI), have whole-brain coverage but capture only larger blood vessels, overlooking the microscopic capillary bed. To integrate data acquired at multiple length scales with different neuroimaging modalities and to reconcile brain-wide macroscale information with microscale multiphoton data, we developed a method for synthesizing hemodynamically equivalent vascular networks for the entire cerebral circulation. This computational approach is intended to aid in the quantification of patterns of cerebral blood flow and metabolism for the entire brain. In part I, we described the mathematical framework for image-guided generation of synthetic vascular networks covering the large cerebral arteries from the circle of Willis through the pial surface network leading back to the venous sinuses. Here in part II, we introduce novel procedures for creating microcirculatory closure that mimics a realistic capillary bed. We demonstrate our capability to synthesize synthetic vascular networks whose morphometrics match empirical network graphs from three independent state-of-the-art imaging laboratories using different image acquisition and reconstruction protocols. We also successfully synthesized twelve vascular networks of a complete mouse brain hemisphere suitable for performing whole-brain blood flow simulations. Synthetic arterial and venous networks with microvascular closure allow whole-brain hemodynamic predictions. Simulations across all length scales will potentially illuminate organ-wide supply and metabolic functions that are inaccessible to models reconstructed from image data with limited spatial coverage.


Asunto(s)
Circulación Cerebrovascular , Hemodinámica , Algoritmos , Animales , Encéfalo/diagnóstico por imagen , Ratones , Microcirculación
5.
bioRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38798389

RESUMEN

Significance: Accurate sensor placement is vital for non-invasive brain imaging, particularly for functional near infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT), which lack standardized layouts like EEG. Custom, manually prepared probe layouts on textile caps are often imprecise and labor-intensive. Aim: We introduce a method for creating personalized, 3D-printed headgear, enabling accurate translation of 3D brain coordinates to 2D printable panels for custom fNIRS and EEG sensor layouts, reducing costs and manual labor. Approach: Our approach uses atlas-based or subject-specific head models and a spring-relaxation algorithm for flattening 3D coordinates onto 2D panels, using 10-5 EEG coordinates for reference. This process ensures geometrical fidelity, crucial for accurate probe placement. Probe geometries and holder types are customizable and printed directly on the cap, making the approach agnostic to instrument manufacturers and probe types. Results: Our ninjaCap method offers 2.2±1.5 mm probe placement accuracy. Over the last five years, we have developed and validated this approach with over 50 cap models and 500 participants. A cloud-based ninjaCap generation pipeline along with detailed instructions is now available at openfnirs.org. Conclusions: The ninjaCap marks a significant advancement in creating individualized neuroimaging caps, reducing costs and labor while improving probe placement accuracy, thereby reducing variability in research.

6.
Neurophotonics ; 11(3): 036601, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39193445

RESUMEN

Accurate sensor placement is vital for non-invasive brain imaging, particularly for functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT), which lack standardized layouts such as those in electroencephalography (EEG). Custom, manually prepared probe layouts on textile caps are often imprecise and labor intensive. We introduce a method for creating personalized, 3D-printed headgear, enabling the accurate translation of 3D brain coordinates to 2D printable panels for custom fNIRS and EEG sensor layouts while reducing costs and manual labor. Our approach uses atlas-based or subject-specific head models and a spring-relaxation algorithm for flattening 3D coordinates onto 2D panels, using 10-5 EEG coordinates for reference. This process ensures geometrical fidelity, crucial for accurate probe placement. Probe geometries and holder types are customizable and printed directly on the cap, making the approach agnostic to instrument manufacturers and probe types. Our ninjaCap method offers 2.7 ± 1.8 mm probe placement accuracy. Over the last five years, we have developed and validated this approach with over 50 cap models and 500 participants. A cloud-based ninjaCap generation pipeline along with detailed instructions is now available at openfnirs.org. The ninjaCap marks a significant advancement in creating individualized neuroimaging caps, reducing costs and labor while improving probe placement accuracy, thereby reducing variability in research.

7.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37986755

RESUMEN

SIGNIFICANCE: Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale (mesoscopic) imaging of neuronal activity with fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts. AIM: Develop a system for mesoscopic imaging of two fluorescent and two reflectance channels. APPROACH: Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625nm LEDs positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector. RESULTS: We demonstrate performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake head-fixed mice with a curved crystal skull window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensor GRABACh3.0 . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes. CONCLUSIONS: Our widefield microscope design with single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.

8.
Neurophotonics ; 11(3): 034310, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38881627

RESUMEN

Significance: Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale ("mesoscopic") imaging of different aspects of neuronal activity with spectrally compatible fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts. Aim: We aim to develop a system for mesoscopic imaging of two fluorescent and two reflectance channels. Approach: Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625-nm light-emitting diodes positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector. Results: We demonstrate the performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake, head-fixed mice with a curved "crystal skull" window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensor GRAB ACh 3.0 . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes. Conclusions: Our widefield microscope design with a single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.

9.
bioRxiv ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39229198

RESUMEN

To enhance early diagnosis and treatment of Alzheimer·s disease (AD), understanding the pathological changes before symptoms arise is crucial. The continuum model of AD suggest that Aß beta (Aß) accumulation precedes symptoms by at least 15 years, with vascular changes detectable around this time. Disturbances in capillary flow dynamics have been linked to reduced oxygen delivery to brain tissue, but evidence in presymptomatic AD remains elusive. We examined capillary flow dynamics in presymptomatic Tg-SwDI mice and the capacity of carbonic anhydrase inhibitors (CAIs) to prevent capillary flow disturbances. Our study revealed capillary flow disturbances associated with alterations in capillary morphology, adhesion molecule expression, and Aß load in cognitively normal 9-10-month-old Tg-SwDI mice. Treated mice showed ameliorated capillary flow disturbances, enhanced oxygen availability, and reduced Aß load. These findings underscore the importance of capillary flow disturbances in presymptomatic AD and highlight CAIs· potential for preserving vascular integrity in early AD.

10.
Bioorg Med Chem ; 21(19): 5955-62, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23978356

RESUMEN

N-(Chloro-3-methoxyphenyl)-2-picolinamide (3, ML128, VU0361737) is an mGlu4 positive allosteric modulator (PAM), which is potent and centrally penetrating. 3 is also the first mGlu4 PAM to show efficacy in a preclinical Parkinson disease model upon systemic dosing. As a noninvasive medical imaging technique and a powerful tool in neurological research, positron emission tomography (PET) offers a possibility to investigate mGlu4 expression in vivo under physiologic and pathological conditions. We synthesized a carbon-11 labeled ML128 ([(11)C]3) as a PET radiotracer for mGlu4, and characterized its biological properties in Sprague Dawley rats. [(11)C]3 was synthesized from N-(4-chloro-3-hydroxyphenyl)-2-picolinamide (2) using [(11)C]CH3I. Total synthesis time was 38±2.2min (n=7) from the end of bombardment to the formulation. The radioligand [(11)C]3 was obtained in 27.7±5.3% (n=5) decay corrected radiochemical yield based on the radioactivity of [(11)C]CO2. The radiochemical purity of [(11)C]3 was >99%. Specific activity was 188.7±88.8GBq/mol (n=4) at the end of synthesis (EOS). PET images were conducted in 20 normal male Sprague Dawley rats including 11 control studies, 6 studies blocking with an mGlu4 modulator (4) to investigate specificity and 3 studies blocking with an mGlu5 modulator (MTEP) to investigate selectivity. These studies showed fast accumulation of [(11)C]3 (peak activity between 1-3min) in several brain areas including striatum, thalamus, hippocampus, cerebellum, and olfactory bulb following with fast washout. Blocking studies with the mGlu4 modulator 4 showed 22-28% decrease of [(11)C]3 accumulation while studies of selectivity showed only minor decrease supporting good selectivity over mGlu5. Biodistribution studies and blood analyses support fast metabolism. Altogether this is the first PET imaging ligand for mGlu4, in which the labeled ML128 was used for imaging its in vivo distribution and pharmacokinetics in brain.


Asunto(s)
Compuestos de Anilina/síntesis química , Radioisótopos de Carbono/química , Ácidos Picolínicos/síntesis química , Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Receptores de Glutamato Metabotrópico/química , Compuestos de Anilina/química , Compuestos de Anilina/farmacología , Animales , Química Encefálica , Masculino , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacología , Radiofármacos/química , Ratas , Ratas Sprague-Dawley
11.
Neurophotonics ; 10(3): 035009, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37705938

RESUMEN

Significance: Brief disruptions in capillary flow, commonly referred to as capillary "stalling," have gained interest recently for their potential role in disrupting cerebral blood flow and oxygen delivery. Approaches to studying this phenomenon have been hindered by limited volumetric imaging rates and cumbersome manual analysis. The ability to precisely and efficiently quantify the dynamics of these events will be key in understanding their potential role in stroke and neurodegenerative diseases, such as Alzheimer's disease. Aim: Our study aimed to demonstrate that the fast volumetric imaging rates offered by Bessel beam two-photon microscopy combined with improved data analysis throughput allows for faster and more precise measurement of capillary stall dynamics. Results: We found that while our analysis approach was unable to achieve full automation, we were able to cut analysis time in half while also finding stalling events that were missed in traditional blind manual analysis. The resulting data showed that our Bessel beam system was captured more stalling events compared to optical coherence tomography, particularly shorter stalling events. We then compare differences in stall dynamics between a young and old group of mice as well as a demonstrate changes in stalling before and after photothrombotic model of stroke. Finally, we also demonstrate the ability to monitor arteriole dynamics alongside stall dynamics. Conclusions: Bessel beam two-photon microscopy combined with high throughput analysis is a powerful tool for studying capillary stalling due to its ability to monitor hundreds of capillaries simultaneously at high frame rates.

12.
J Cereb Blood Flow Metab ; 43(4): 595-609, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36495178

RESUMEN

Two photon microscopy and optical coherence tomography (OCT) are two standard methods for measuring flow speeds of red blood cells in microvessels, particularly in animal models. However, traditional two photon microscopy lacks the depth of field to adequately capture the full volumetric complexity of the cerebral microvasculature and OCT lacks the specificity offered by fluorescent labeling. In addition, the traditional raster scanning technique utilized in both modalities requires a balance of image frame rate and field of view, which severely limits the study of RBC velocities in the microvascular network. Here, we overcome this by using a custom two photon system with an axicon based Bessel beam to obtain volumetric images of the microvascular network with fluorescent specificity. We combine this with a novel scan pattern that generates pairs of frames with short time delay sufficient for tracking red blood cell flow in capillaries. We track RBC flow speeds in 10 or more capillaries simultaneously at 1 Hz in a 237 µm × 237 µm × 120 µm volume and quantified both their spatial and temporal variability in speed. We also demonstrate the ability to track flow speed changes around stalls in capillary flow and measure to 300 µm in depth.


Asunto(s)
Capilares , Circulación Cerebrovascular , Animales , Capilares/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Circulación Cerebrovascular/fisiología , Encéfalo/irrigación sanguínea , Microvasos/diagnóstico por imagen
13.
Neuroimage Clin ; 38: 103377, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36948140

RESUMEN

Functional neuroimaging, which measures hemodynamic responses to brain activity, has great potential for monitoring recovery in stroke patients and guiding rehabilitation during recovery. However, hemodynamic responses after stroke are almost always altered relative to responses in healthy subjects and it is still unclear if these alterations reflect the underlying brain physiology or if the alterations are purely due to vascular injury. In other words, we do not know the effect of stroke on neurovascular coupling and are therefore limited in our ability to use functional neuroimaging to accurately interpret stroke pathophysiology. To address this challenge, we simultaneously captured neural activity, through fluorescence calcium imaging, and hemodynamics, through intrinsic optical signal imaging, during longitudinal stroke recovery. Our data suggest that neurovascular coupling was preserved in the chronic phase of recovery (2 weeks and 4 weeks post-stoke) and resembled pre-stroke neurovascular coupling. This indicates that functional neuroimaging faithfully represents the underlying neural activity in chronic stroke. Further, neurovascular coupling in the sub-acute phase of stroke recovery was predictive of long-term behavioral outcomes. Stroke also resulted in increases in global brain oscillations, which showed distinct patterns between neural activity and hemodynamics. Increased neural excitability in the contralesional hemisphere was associated with increased contralesional intrahemispheric connectivity. Additionally, sub-acute increases in hemodynamic oscillations were associated with improved sensorimotor outcomes. Collectively, these results support the use of hemodynamic measures of brain activity post-stroke for predicting functional and behavioral outcomes.


Asunto(s)
Acoplamiento Neurovascular , Accidente Cerebrovascular , Humanos , Acoplamiento Neurovascular/fisiología , Accidente Cerebrovascular/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Hemodinámica/fisiología , Neuroimagen Funcional
14.
Neurophotonics ; 10(1): 013507, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36507152

RESUMEN

Significance: Functional near-infrared spectroscopy (fNIRS) is a popular neuroimaging technique with proliferating hardware platforms, analysis approaches, and software tools. There has not been a standardized file format for storing fNIRS data, which has hindered the sharing of data as well as the adoption and development of software tools. Aim: We endeavored to design a file format to facilitate the analysis and sharing of fNIRS data that is flexible enough to meet the community's needs and sufficiently defined to be implemented consistently across various hardware and software platforms. Approach: The shared NIRS format (SNIRF) specification was developed in consultation with the academic and commercial fNIRS community and the Society for functional Near Infrared Spectroscopy. Results: The SNIRF specification defines a format for fNIRS data acquired using continuous wave, frequency domain, time domain, and diffuse correlation spectroscopy devices. Conclusions: We present the SNIRF along with validation software and example datasets. Support for reading and writing SNIRF data has been implemented by major hardware and software platforms, and the format has found widespread use in the fNIRS community.

15.
Sci Rep ; 12(1): 363, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013441

RESUMEN

Optical coherence tomography (OCT) is an emerging 3D imaging technique that allows quantification of intrinsic optical properties such as scattering coefficient and back-scattering coefficient, and has proved useful in distinguishing delicate microstructures in the human brain. The origins of scattering in brain tissues are contributed by the myelin content, neuron size and density primarily; however, no quantitative relationships between them have been reported, which hampers the use of OCT in fundamental studies of architectonic areas in the human brain and the pathological evaluations of diseases. Here, we built a generalized linear model based on Mie scattering theory that quantitatively links tissue scattering to myelin content and neuron density in the human brain. We report a strong linear relationship between scattering coefficient and the myelin content that is retained across different regions of the brain. Neuronal cell body turns out to be a secondary contribution to the overall scattering. The optical property of OCT provides a label-free solution for quantifying volumetric myelin content and neuron cells in the human brain.


Asunto(s)
Encéfalo/diagnóstico por imagen , Vaina de Mielina , Neuroimagen , Neuronas/química , Tomografía de Coherencia Óptica , Adulto , Anciano , Encéfalo/citología , Encéfalo/metabolismo , Cadáver , Femenino , Humanos , Imagenología Tridimensional , Rayos Láser , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Dispersión de Radiación
16.
J Cereb Blood Flow Metab ; 42(3): 510-525, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-32515672

RESUMEN

The cerebral cortex has a number of conserved morphological and functional characteristics across brain regions and species. Among them, the laminar differences in microvascular density and mitochondrial cytochrome c oxidase staining suggest potential laminar variability in the baseline O2 metabolism and/or laminar variability in both O2 demand and hemodynamic response. Here, we investigate the laminar profile of stimulus-induced intravascular partial pressure of O2 (pO2) transients to stimulus-induced neuronal activation in fully awake mice using two-photon phosphorescence lifetime microscopy. Our results demonstrate that stimulus-induced changes in intravascular pO2 are conserved across cortical layers I-IV, suggesting a tightly controlled neurovascular response to provide adequate O2 supply across cortical depth. In addition, we observed a larger change in venular O2 saturation (ΔsO2) compared to arterioles, a gradual increase in venular ΔsO2 response towards the cortical surface, and absence of the intravascular "initial dip" previously reported under anesthesia. This study paves the way for quantification of layer-specific cerebral O2 metabolic responses, facilitating investigation of brain energetics in health and disease and informed interpretation of laminar blood oxygen level dependent functional magnetic resonance imaging signals.


Asunto(s)
Corteza Cerebral/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Acoplamiento Neurovascular/fisiología , Imagen Óptica/métodos , Oxígeno/sangre , Animales , Femenino , Hemodinámica/fisiología , Ratones , Ratones Endogámicos C57BL , Microscopía , Vigilia
17.
IEEE Trans Biomed Eng ; 69(12): 3645-3656, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35560084

RESUMEN

OBJECTIVE: Serial sectioning optical coherence tomography (OCT) enables accurate volumetric reconstruction of several cubic centimeters of human brain samples. We aimed to identify anatomical features of the ex vivo human brain, such as intraparenchymal blood vessels and axonal fiber bundles, from the OCT data in 3D, using intrinsic optical contrast. METHODS: We developed an automatic processing pipeline to enable characterization of the intraparenchymal microvascular network in human brain samples. RESULTS: We demonstrated the automatic extraction of the vessels down to a 20 µm in diameter using a filtering strategy followed by a graphing representation and characterization of the geometrical properties of microvascular network in 3D. We also showed the ability to extend this processing strategy to extract axonal fiber bundles from the volumetric OCT image. CONCLUSION: This method provides a viable tool for quantitative characterization of volumetric microvascular network as well as the axonal bundle properties in normal and pathological tissues of the ex vivo human brain.


Asunto(s)
Imagenología Tridimensional , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Imagenología Tridimensional/métodos , Encéfalo/diagnóstico por imagen , Microvasos/diagnóstico por imagen , Técnicas Histológicas
18.
J Cereb Blood Flow Metab ; 41(9): 2256-2263, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33593116

RESUMEN

Spreading depolarization (SD) is associated with profound oligemia and reduced oxygen availability in the mouse cortex during the depolarization phase. Coincident pial arteriolar constriction has been implicated as the primary mechanism for the oligemia. However, where in the vascular bed the hemodynamic response starts has been unclear. To resolve the origin of the hemodynamic response, we used optical coherence tomography (OCT) to simultaneously monitor changes in the vascular tree from capillary bed to pial arteries in mice during two consecutive SDs 15 minutes apart. We found that capillary flow dropped several seconds before pial arteriolar constriction. Moreover, penetrating arterioles constricted before pial arteries suggesting upstream propagation of constriction. Smaller caliber distal pial arteries constricted stronger than larger caliber proximal arterioles, suggesting that the farther the constriction propagates, the weaker it gets. Altogether, our data indicate that the hemodynamic response to cortical SD originates in the capillary bed.


Asunto(s)
Arteriolas/fisiología , Capilares/fisiología , Circulación Cerebrovascular/fisiología , Tomografía de Coherencia Óptica/métodos , Animales , Humanos , Masculino , Ratones
19.
J Neurotrauma ; 38(4): 446-454, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-32998634

RESUMEN

Intracranial hypertension (IH) is a common feature of many pathologies, including brain edema. In the brain, the extended network of capillaries ensures blood flow to meet local metabolic demands. Capillary circulation may be severely affected by IH, but no studies have quantified the effect of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) on capillary perfusion during the development of brain edema. We used optical coherence tomography angiography to quantify relative changes of fractional perfused volume (FPV) in cortical capillaries and simultaneously monitored ICP and blood pressure (BP) in anesthetized male C57Bl/6NTac mice during development of brain edema induced by water intoxication (WI) within 30 min. WI induced severe IH and brain herniation. ICP and CPP reached 90.2 mm Hg and 38.4 mm Hg, respectively. FPV was significantly affected already at normal ICP (ICP <15 mm Hg, slope ≈ -1.46, p < 0.001) and, at the onset of IH (ICP = 20-22 mm Hg), FPV was 17.9 ± 13.3% lower than baseline. A decreasing trend was observed until the ICP peak (Δ%FPV = -43.6 ± 19.2%). In the ICP range of 7-42 mm Hg, relative changes in FPV were significantly correlated with ICP, BP, and CPP (p < 0.001), with ICP and CPP being the best predictors. In conclusion, elevated ICP induces a gradual collapse of the cerebral microvasculature, which is initiated before the clinical threshold of IH. In summary, the estimate of capillary perfusion might be essential in patients with IH to assess the state of the brain microcirculation and to improve the availability of oxygen and nutrients to the brain.


Asunto(s)
Presión Sanguínea/fisiología , Capilares/fisiopatología , Hipertensión Intracraneal/fisiopatología , Presión Intracraneal/fisiología , Animales , Modelos Animales de Enfermedad , Hipertensión Intracraneal/diagnóstico por imagen , Masculino , Ratones , Microcirculación/fisiología , Tomografía de Coherencia Óptica
20.
Neuroimage Clin ; 29: 102539, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33385882

RESUMEN

Ischemic stroke leads to a reduction or complete loss of blood supply causing injury to brain tissue, which ultimately leads to behavioral impairment. Optical techniques are widely used to study the structural and functional changes that result as a consequence of ischemic stroke both in the acute and chronic phases of stroke recovery. It is currently a challenge to accurately estimate the spatial extent of the infarct without the use of histological parameters however, and in order to follow recovery mechanisms longitudinally at the mesoscopic scale it is essential to know the spatial extent of the stroke core. In this paper we first establish optical coherence tomography (OCT) as a reliable indicator of the stroke core by analyzing signal attenuation and spatially correlating it with the infarct, determined by staining with triphenyl-tetrazolium chloride (TTC). We then introduce spatial frequency domain imaging (SFDI) as a mesoscopic optical technique that can be used to accurately measure the infarct spatial extent by exploiting changes in optical scattering that occur as a consequence of ischemic stroke. Additionally, we follow the progression of ischemia through the acute and sub-acute phases of stroke recovery using both OCT and SFDI and show a consistently high spatial overlap in estimating infarct location. The use of SFDI in assessing infarct location will allow longitudinal studies targeted at following functional recovery mechanisms on a mesoscopic level without having to sacrifice the mouse acutely.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Animales , Encéfalo/diagnóstico por imagen , Ratones , Recuperación de la Función , Accidente Cerebrovascular/diagnóstico por imagen , Tomografía de Coherencia Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA