Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 123(5): 056803, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31491314

RESUMEN

A quantum magnetic impurity of spin S at the edge of a two-dimensional time reversal invariant topological insulator may give rise to backscattering. We study here the shot noise associated with the backscattering current for arbitrary S. Our full analytical solution reveals that for S>1/2 the Fano factor may be arbitrarily large, reflecting bunching of large batches of electrons. By contrast, we rigorously prove that for S=1/2 the Fano factor is bounded between 1 and 2, generalizing earlier studies.

2.
Phys Rev Lett ; 123(2): 026804, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31386525

RESUMEN

Hydrodynamic charge transport is at the center of recent research efforts. Of particular interest is the nondissipative Hall viscosity, which conveys topological information in clean gapped systems. The prevalence of disorder in the real world calls for a study of its effect on viscosity. Here we address this question, both analytically and numerically, in the context of disordered noninteracting 2D electrons. Analytically, we employ the self-consistent Born approximation, explicitly taking into account the modification of the single-particle density of states and the elastic transport time due to the Landau quantization. The reported results interpolate smoothly between the limiting cases of a weak (strong) magnetic field and strong (weak) disorder. In the regime of a weak magnetic field our results describe the quantum (Shubnikov-de Haas type) oscillations of the dissipative and Hall viscosity. For strong magnetic fields we characterize the effects of the disorder-induced broadening of the Landau levels on the viscosity coefficients. This is supplemented by numerical calculations for a few filled Landau levels. Our results show that the Hall viscosity is surprisingly robust to disorder.

3.
Nat Commun ; 14(1): 2237, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076501

RESUMEN

We develop a theory of charge transport along the quantum Hall edge proximitized by a superconductor. We note that generically Andreev reflection of an edge state is suppressed if translation invariance along the edge is preserved. Disorder in a "dirty" superconductor enables the Andreev reflection but makes it random. As a result, the conductance of a proximitized segment is a stochastic quantity with giant sign-alternating fluctuations and zero average. We find the statistical distribution of the conductance and its dependence on electron density, magnetic field, and temperature. Our theory provides an explanation of a recent experiment with a proximitized edge state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA