Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
J Struct Biol ; 215(3): 108004, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37495196

RESUMEN

NAD homeostasis in mammals requires the salvage of nicotinamide (Nam), which is cleaved from NAD+ by sirtuins, PARPs, and other NAD+-dependent signaling enzymes. Nam phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in vitamin B3 salvage, whereby Nam reacts with phosphoribosyl pyrophosphate (PRPP) to form nicotinamide mononucleotide. NAMPT has a high affinity towards Nam, which is further enhanced by autophosphorylation of His247. The mechanism of this enhancement has remained unknown. Here, we present high-resolution crystal structures and biochemical data that provide reasoning for the increased affinity of the phosphorylated NAMPT for its substrate. Structural and kinetic analyses suggest a mechanism that includes Mg2+ coordination by phospho-His247, such that PRPP is stabilized in a position highly favorable for catalysis. Under these conditions, nicotinic acid (NA) can serve as a substrate. Moreover, we demonstrate that a stretch of 10 amino acids, present only in NAMPTs from deuterostomes, facilitates conformational plasticity and stabilizes the chemically unstable phosphorylation of His247. Thereby the apparent substrate affinity is considerably enhanced compared to prokaryotic NAMPTs. Collectively, our study provides a structural basis for the important function of NAMPT to recycle Nam into NAD biosynthesis with high affinity.


Asunto(s)
NAD , Niacinamida , Animales , NAD/metabolismo , Niacinamida/metabolismo , Nicotinamida Fosforribosiltransferasa/química , Nicotinamida Fosforribosiltransferasa/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Fosforilación , Cinética , Mamíferos/metabolismo
2.
J Biol Chem ; 298(4): 101803, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35257744

RESUMEN

Hepatocyte nuclear factor 1A (HNF-1A) is a transcription factor expressed in several embryonic and adult tissues, modulating the expression of numerous target genes. Pathogenic variants in the HNF1A gene are known to cause maturity-onset diabetes of the young 3 (MODY3 or HNF1A MODY), a disease characterized by dominant inheritance, age of onset before 25 to 35 years of age, and pancreatic ß-cell dysfunction. A precise diagnosis can alter management of this disease, as insulin can be exchanged with sulfonylurea tablets and genetic counseling differs from polygenic forms of diabetes. Therefore, more knowledge on the mechanisms of HNF-1A function and the level of pathogenicity of the numerous HNF1A variants is required for precise diagnostics. Here, we structurally and biophysically characterized an HNF-1A protein containing both the DNA-binding domain and the dimerization domain, and determined the folding and DNA-binding capacity of two established MODY3 HNF-1A variant proteins (P112L, R263C) and one variant of unknown significance (N266S). All three variants showed reduced functionality compared to the WT protein. Furthermore, while the R263C and N266S variants displayed reduced binding to an HNF-1A target promoter, we found the P112L variant was unstable in vitro and in cells. Our results support and mechanistically explain disease causality for these investigated variants and present a novel approach for the dissection of structurally unstable and DNA-binding defective variants. This study indicates that structural and biochemical investigation of HNF-1A is a valuable tool in reliable variant classification needed for precision diabetes diagnostics and management.


Asunto(s)
Diabetes Mellitus Tipo 2 , Factor Nuclear 1-alfa del Hepatocito , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Variación Genética , Factor Nuclear 1-alfa del Hepatocito/química , Factor Nuclear 1-alfa del Hepatocito/genética , Humanos , Unión Proteica , Dominios Proteicos
3.
Proteins ; 91(12): 1571-1599, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37493353

RESUMEN

We present an in-depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three-dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology.


Asunto(s)
Biología Computacional , Proteínas , Conformación Proteica , Modelos Moleculares , Biología Computacional/métodos , Proteínas/química
4.
PLoS Pathog ; 17(11): e1009743, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34797899

RESUMEN

Phosphatidylserine (PS) receptors enhance infection of many enveloped viruses through virion-associated PS binding that is termed apoptotic mimicry. Here we show that this broadly shared uptake mechanism is utilized by SARS-CoV-2 in cells that express low surface levels of ACE2. Expression of members of the TIM (TIM-1 and TIM-4) and TAM (AXL) families of PS receptors enhance SARS-CoV-2 binding to cells, facilitate internalization of fluorescently-labeled virions and increase ACE2-dependent infection of SARS-CoV-2; however, PS receptors alone did not mediate infection. We were unable to detect direct interactions of the PS receptor AXL with purified SARS-CoV-2 spike, contrary to a previous report. Instead, our studies indicate that the PS receptors interact with PS on the surface of SARS-CoV-2 virions. In support of this, we demonstrate that: 1) significant quantities of PS are located on the outer leaflet of SARS-CoV-2 virions, 2) PS liposomes, but not phosphatidylcholine liposomes, reduced entry of VSV/Spike pseudovirions and 3) an established mutant of TIM-1 which does not bind to PS is unable to facilitate entry of SARS-CoV-2. As AXL is an abundant PS receptor on a number of airway lines, we evaluated small molecule inhibitors of AXL signaling such as bemcentinib for their ability to inhibit SARS-CoV-2 infection. Bemcentinib robustly inhibited virus infection of Vero E6 cells as well as multiple human lung cell lines that expressed AXL. This inhibition correlated well with inhibitors that block endosomal acidification and cathepsin activity, consistent with AXL-mediated uptake of SARS-CoV-2 into the endosomal compartment. We extended our observations to the related betacoronavirus mouse hepatitis virus (MHV), showing that inhibition or ablation of AXL reduces MHV infection of murine cells. In total, our findings provide evidence that PS receptors facilitate infection of the pandemic coronavirus SARS-CoV-2 and suggest that inhibition of the PS receptor AXL has therapeutic potential against SARS-CoV-2.


Asunto(s)
COVID-19/etiología , Receptores de Superficie Celular/fisiología , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/fisiología , Animales , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores de Superficie Celular/antagonistas & inhibidores , Internalización del Virus , Tirosina Quinasa del Receptor Axl , Tratamiento Farmacológico de COVID-19
5.
Cell Mol Life Sci ; 79(2): 125, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35132495

RESUMEN

Apicomplexan parasites, such as Plasmodium spp., rely on an unusual actomyosin motor, termed glideosome, for motility and host cell invasion. The actin filaments are maintained by a small set of essential regulators, which provide control over actin dynamics in the different stages of the parasite life cycle. Actin filament capping proteins (CPs) are indispensable heterodimeric regulators of actin dynamics. CPs have been extensively characterized in higher eukaryotes, but their role and functional mechanism in Apicomplexa remain enigmatic. Here, we present the first crystal structure of a homodimeric CP from the malaria parasite and compare the homo- and heterodimeric CP structures in detail. Despite retaining several characteristics of a canonical CP, the homodimeric Plasmodium berghei (Pb)CP exhibits crucial differences to the canonical heterodimers. Both homo- and heterodimeric PbCPs regulate actin dynamics in an atypical manner, facilitating rapid turnover of parasite actin, without affecting its critical concentration. Homo- and heterodimeric PbCPs show partially redundant activities, possibly to rescue actin filament capping in life cycle stages where the ß-subunit is downregulated. Our data suggest that the homodimeric PbCP also influences actin kinetics by recruiting lateral actin dimers. This unusual function could arise from the absence of a ß-subunit, as the asymmetric PbCP homodimer lacks structural elements essential for canonical barbed end interactions suggesting a novel CP binding mode. These findings will facilitate further studies aimed at elucidating the precise actin filament capping mechanism in Plasmodium.


Asunto(s)
Proteínas de Capping de la Actina , Antígenos de Protozoos , Malaria/parasitología , Plasmodium/metabolismo , Proteínas Protozoarias , Proteínas de Capping de la Actina/química , Proteínas de Capping de la Actina/metabolismo , Antígenos de Protozoos/química , Antígenos de Protozoos/metabolismo , Cinética , Modelos Moleculares , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
6.
Cell Mol Life Sci ; 79(8): 419, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35829923

RESUMEN

The myelin sheath is an essential, multilayered membrane structure that insulates axons, enabling the rapid transmission of nerve impulses. The tetraspan myelin proteolipid protein (PLP) is the most abundant protein of compact myelin in the central nervous system (CNS). The integral membrane protein PLP adheres myelin membranes together and enhances the compaction of myelin, having a fundamental role in myelin stability and axonal support. PLP is linked to severe CNS neuropathies, including inherited Pelizaeus-Merzbacher disease and spastic paraplegia type 2, as well as multiple sclerosis. Nevertheless, the structure, lipid interaction properties, and membrane organization mechanisms of PLP have remained unidentified. We expressed, purified, and structurally characterized human PLP and its shorter isoform DM20. Synchrotron radiation circular dichroism spectroscopy and small-angle X-ray and neutron scattering revealed a dimeric, α-helical conformation for both PLP and DM20 in detergent complexes, and pinpoint structural variations between the isoforms and their influence on protein function. In phosphatidylcholine membranes, reconstituted PLP and DM20 spontaneously induced formation of multilamellar myelin-like membrane assemblies. Cholesterol and sphingomyelin enhanced the membrane organization but were not crucial for membrane stacking. Electron cryomicroscopy, atomic force microscopy, and X-ray diffraction experiments for membrane-embedded PLP/DM20 illustrated effective membrane stacking and ordered organization of membrane assemblies with a repeat distance in line with CNS myelin. Our results shed light on the 3D structure of myelin PLP and DM20, their structure-function differences, as well as fundamental protein-lipid interplay in CNS compact myelin.


Asunto(s)
Membrana Dobles de Lípidos , Proteína Proteolipídica de la Mielina , Axones/metabolismo , Sistema Nervioso Central/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Proteína Proteolipídica de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Isoformas de Proteínas/metabolismo
7.
Biochemistry ; 61(20): 2248-2260, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36194497

RESUMEN

Enzyme stability and function can be affected by various environmental factors, such as temperature, pH, and ionic strength. Enzymes that are located outside the relatively unchanging environment of the cytosol, such as those residing in the periplasmic space of bacteria or extracellularly secreted, are challenged by more fluctuations in the aqueous medium. Bacterial alkaline phosphatases (APs) are generally affected by ionic strength of the medium, but this varies substantially between species. An AP from the marine bacterium Vibrio splendidus (VAP) shows complex pH-dependent activation and stabilization in the 0-1.0 M range of halogen salts and has been hypothesized to specifically bind chloride anions. Here, using X-ray crystallography and anomalous scattering, we have located two chloride binding sites in the structure of VAP, one in the active site and another one at a peripheral site. Further characterization of the binding sites using site-directed mutagenesis and small-angle X-ray scattering showed that upon binding of chloride to the peripheral site, structural dynamics decreased locally, resulting in thermal stabilization of the VAP active conformation. Binding of the chloride ion in the active site did not displace the bound inorganic phosphate product, but it may promote product release by facilitating rotational stabilization of the substrate-binding Arg129. Overall, these results reveal the complex nature and dynamics of chloride binding to enzymes through long-range modulation of electronic potential in the vicinity of the active site, resulting in increased catalytic efficiency and stability.


Asunto(s)
Fosfatasa Alcalina , Vibrio , Fosfatasa Alcalina/química , Sitios de Unión , Cloruros , Cristalografía por Rayos X , Halógenos , Concentración de Iones de Hidrógeno , Fosfatos , Sales (Química)
8.
Amino Acids ; 54(1): 99-109, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34889995

RESUMEN

Myelin basic protein (MBP) is an abundant protein in central nervous system (CNS) myelin. MBP has long been studied as a factor in the pathogenesis of the autoimmune neurodegenerative disease multiple sclerosis (MS). MS is characterized by CNS inflammation, demyelination, and axonal loss. One of the main theories on the pathogenesis of MS suggests that exposure to foreign antigens causes the activation of cross-reactive T cells in genetically susceptible individuals, with MBP being a possible autoantigen. While a direct role for MBP as a primary antigen in human MS is unclear, it is clear that MBP and its functions in myelin formation and long-term maintenance are linked to MS. This review looks at some key molecular characteristics of MBP and its relevance to MS, as well as the mechanisms of possible molecular mimicry between MBP and some viral antigens. We also discuss the use of serum anti-myelin antibodies as biomarkers for disease. MBP is a prime example of an apparently simple, but in fact biochemically and structurally complex molecule, which is closely linked to both normal nervous system development and neurodegenerative disease.


Asunto(s)
Esclerosis Múltiple , Enfermedades Neurodegenerativas , Autoantígenos , Humanos , Proteína Básica de Mielina , Linfocitos T
9.
Neurochem Res ; 47(9): 2656-2666, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35307777

RESUMEN

Activity-regulated cytoskeleton-associated (Arc) protein plays key roles in long-term synaptic plasticity, memory, and cognitive flexibility. However, an integral understanding of Arc mechanisms is lacking. Arc is proposed to function as an interaction hub in neuronal dendrites and the nucleus, yet Arc can also form retrovirus-like capsids with proposed roles in intercellular communication. Here, we sought to develop anti-Arc nanobodies (ArcNbs) as new tools for probing Arc dynamics and function. Six ArcNbs representing different clonal lines were selected from immunized alpaca. Immunoblotting with recombinant ArcNbs fused to a small ALFA-epitope tag demonstrated binding to recombinant Arc as well as endogenous Arc from rat cortical tissue. ALFA-tagged ArcNb also provided efficient immunoprecipitation of stimulus-induced Arc after carbachol-treatment of SH-SY5Y neuroblastoma cells and induction of long-term potentiation in the rat dentate gyrus in vivo. Epitope mapping showed that all Nbs recognize the Arc C-terminal region containing the retroviral Gag capsid homology domain, comprised of tandem N- and C-lobes. ArcNbs E5 and H11 selectively bound the N-lobe, which harbors a peptide ligand binding pocket specific to mammals. Four additional ArcNbs bound the region containing the C-lobe and C-terminal tail. For use as genetically encoded fluorescent intrabodies, we show that ArcNbs fused to mScarlet-I are uniformly expressed, without aggregation, in the cytoplasm and nucleus of HEK293FT cells. Finally, mScarlet-I-ArcNb H11 expressed as intrabody selectively bound the N-lobe and enabled co-immunoprecipitation of full-length intracellular Arc. ArcNbs are versatile tools for live-cell labeling and purification of Arc, and interrogation of Arc capsid domain specific functions.


Asunto(s)
Neuroblastoma , Anticuerpos de Dominio Único , Animales , Proteínas del Citoesqueleto/metabolismo , Humanos , Potenciación a Largo Plazo/fisiología , Mamíferos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Ratas
10.
J Struct Biol ; 213(1): 107674, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33253877

RESUMEN

Pyridoxal 5́-phosphate (PLP) is an important cofactor for amino acid decarboxylases with many biological functions, including the synthesis of signalling molecules, such as serotonin, dopamine, histamine, γ-aminobutyric acid, and taurine. Taurine is an abundant amino acid with multiple physiological functions, including osmoregulation, pH regulation, antioxidative protection, and neuromodulation. In mammalian tissues, taurine is mainly produced by decarboxylation of cysteine sulphinic acid to hypotaurine, catalysed by the PLP-dependent cysteine sulphinic acid decarboxylase (CSAD), followed by oxidation of the product to taurine. We determined the crystal structure of mouse CSAD and compared it to other PLP-dependent decarboxylases in order to identify determinants of substrate specificity and catalytic activity. Recognition of the substrate involves distinct side chains forming the substrate-binding cavity. In addition, the backbone conformation of a buried active-site loop appears to be a critical determinant for substrate side chain binding in PLP-dependent decarboxylases. Phe94 was predicted to affect substrate specificity, and its mutation to serine altered both the catalytic properties of CSAD and its stability. Using small-angle X-ray scattering, we further showed that CSAD presents open/close motions in solution. The structure of apo-CSAD indicates that the active site gets more ordered upon internal aldimine formation. Taken together, the results highlight details of substrate recognition in PLP-dependent decarboxylases and provide starting points for structure-based inhibitor design with the aim of affecting the biosynthesis of taurine and other abundant amino acid metabolites.


Asunto(s)
Carboxiliasas/química , Carboxiliasas/metabolismo , Cisteína/análogos & derivados , Taurina/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico/fisiología , Cisteína/química , Cisteína/metabolismo , Ratones , Unión Proteica/fisiología , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Especificidad por Sustrato , Taurina/análogos & derivados , Taurina/metabolismo
11.
J Biol Chem ; 295(26): 8692-8705, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32265298

RESUMEN

Myelin protein P2 is a peripheral membrane protein of the fatty acid-binding protein family that functions in the formation and maintenance of the peripheral nerve myelin sheath. Several P2 gene mutations cause human Charcot-Marie-Tooth neuropathy, but the mature myelin sheath assembly mechanism is unclear. Here, cryo-EM of myelin-like proteolipid multilayers revealed an ordered three-dimensional (3D) lattice of P2 molecules between stacked lipid bilayers, visualizing supramolecular assembly at the myelin major dense line. The data disclosed that a single P2 layer is inserted between two bilayers in a tight intermembrane space of ∼3 nm, implying direct interactions between P2 and two membrane surfaces. X-ray diffraction from P2-stacked bicelle multilayers revealed lateral protein organization, and surface mutagenesis of P2 coupled with structure-function experiments revealed a role for both the portal region of P2 and its opposite face in membrane interactions. Atomistic molecular dynamics simulations of P2 on model membrane surfaces suggested that Arg-88 is critical for P2-membrane interactions, in addition to the helical lid domain. Negatively charged lipid headgroups stably anchored P2 on the myelin-like bilayer surface. Membrane binding may be accompanied by opening of the P2 ß-barrel structure and ligand exchange with the apposing bilayer. Our results provide an unprecedented view into an ordered, multilayered biomolecular membrane system induced by the presence of a peripheral membrane protein from human myelin. This is an important step toward deciphering the 3D assembly of a mature myelin sheath at the molecular level.


Asunto(s)
Proteína P2 de Mielina/química , Proteína P2 de Mielina/ultraestructura , Colesterol/metabolismo , Microscopía por Crioelectrón , Ácidos Grasos/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Simulación de Dinámica Molecular , Proteína P2 de Mielina/genética , Proteína P2 de Mielina/metabolismo , Mutación Puntual , Unión Proteica , Conformación Proteica , Difracción de Rayos X
12.
Expert Rev Proteomics ; 18(6): 415-422, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34210208

RESUMEN

Introduction: Proteins are biological nanoparticles. For structural proteomics and hybrid structural biology, complementary methods are required that allow both high throughput and accurate automated data analysis. Small-angle X-ray scattering (SAXS) is a method for observing the size and shape of particles, such as proteins and complexes, in solution. SAXS data can be used to model both the structure, oligomeric state, conformational changes, and flexibility of biomolecular samples.Areas covered: The key principles of SAXS, its sample requirements, and its current and future applications for structural proteomics are briefly reviewed. Recent technical developments in SAXS experiments are discussed, and future potential of the method in structural proteomics is evaluated.Expert opinion: SAXS is a method suitable for several aspects of integrative structural proteomics, with current technical developments allowing for higher throughput and time-resolved studies, as well as the analysis of complex samples, such as membrane proteins. Increasing automation and streamlined data analysis are expected to equip SAXS for structure-based screening workflows. Originally, structural genomics had a heavy focus on folded, crystallizable proteins and complexes - SAXS is a method allowing an expansion of this focus to flexible and disordered systems.


Asunto(s)
Proteínas , Proteómica , Humanos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Rayos X
13.
Hum Mol Genet ; 27(4): 706-715, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29315381

RESUMEN

Mutations in the mitochondrially located protein CHCHD10 cause motoneuron disease by an unknown mechanism. In this study, we investigate the mutations p.R15L and p.G66V in comparison to wild-type CHCHD10 and the non-pathogenic variant p.P34S in vitro, in patient cells as well as in the vertebrate in vivo model zebrafish. We demonstrate a reduction of CHCHD10 protein levels in p.R15L and p.G66V mutant patient cells to approximately 50%. Quantitative real-time PCR revealed that expression of CHCHD10 p.R15L, but not of CHCHD10 p.G66V, is already abrogated at the mRNA level. Altered secondary structure and rapid protein degradation are observed with regard to the CHCHD10 p.G66V mutant. In contrast, no significant differences in expression, degradation rate or secondary structure of non-pathogenic CHCHD10 p.P34S are detected when compared with wild-type protein. Knockdown of CHCHD10 expression in zebrafish to about 50% causes motoneuron pathology, abnormal myofibrillar structure and motility deficits in vivo. Thus, our data show that the CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease primarily based on haploinsufficiency of CHCHD10.


Asunto(s)
Haploinsuficiencia/fisiología , Proteínas Mitocondriales/metabolismo , Enfermedad de la Neurona Motora/metabolismo , Animales , ADN Complementario/genética , ADN Complementario/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Haploinsuficiencia/genética , Humanos , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Enfermedad de la Neurona Motora/genética , Mutación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
14.
Biochem Biophys Res Commun ; 525(3): 681-686, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32139121

RESUMEN

Actin capping proteins belong to the core set of proteins minimally required for actin-based motility and are present in virtually all eukaryotic cells. They bind to the fast-growing barbed end of an actin filament, preventing addition and loss of monomers, thus restricting growth to the slow-growing pointed end. Actin capping proteins are usually heterodimers of two subunits. The Plasmodium orthologs are an exception, as their α subunits are able to form homodimers. We show here that, while the ß subunit alone is unstable, the α subunit of the Plasmodium actin capping protein forms functional homo- and heterodimers. This implies independent functions for the αα homo- and αß heterodimers in certain stages of the parasite life cycle. Structurally, the homodimers resemble canonical αß heterodimers, although certain rearrangements at the interface must be required. Both homo- and heterodimers bind to actin filaments in a roughly equimolar ratio, indicating they may also bind other sites than barbed ends.


Asunto(s)
Proteínas de Capping de la Actina/metabolismo , Malaria/parasitología , Parásitos/metabolismo , Multimerización de Proteína , Proteínas Protozoarias/metabolismo , Proteínas de Capping de la Actina/química , Citoesqueleto de Actina/metabolismo , Animales , Plasmodium/metabolismo , Unión Proteica , Pliegue de Proteína , Soluciones , Temperatura
15.
J Neurochem ; 148(2): 291-306, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30411798

RESUMEN

Tyrosine hydroxylase (TH) is a multi-domain, homo-oligomeric enzyme that catalyses the rate-limiting step of catecholamine neurotransmitter biosynthesis. Missense variants of human TH are associated with a recessive neurometabolic disease with low levels of brain dopamine and noradrenaline, resulting in a variable clinical picture, from progressive brain encephalopathy to adolescent onset DOPA-responsive dystonia (DRD). We expressed isoform 1 of human TH (hTH1) and its dystonia-associated missense variants in E. coli, analysed their quaternary structure and thermal stability using size-exclusion chromatography, circular dichroism, multi-angle light scattering, transmission electron microscopy, small-angle X-ray scattering and assayed hydroxylase activity. Wild-type (WT) hTH1 was a mixture of enzymatically stable tetramers (85.6%) and octamers (14.4%), with little interconversion between these species. We also observed small amounts of higher order assemblies of long chains of enzyme by transmission electron microscopy. To investigate the role of molecular assemblies in the pathogenesis of DRD, we compared the structure of WT hTH1 with the DRD-associated variants R410P and D467G that are found in vicinity of the predicted subunit interfaces. In contrast to WT hTH1, R410P and D467G were mixtures of tetrameric and dimeric species. Inspection of the available structures revealed that Arg-410 and Asp-467 are important for maintaining the stability and oligomeric structure of TH. Disruption of the normal quaternary enzyme structure by missense variants is a new molecular mechanism that may explain the loss of TH enzymatic activity in DRD. Unstable missense variants could be targets for pharmacological intervention in DRD, aimed to re-establish the normal oligomeric state of TH.


Asunto(s)
Trastornos Distónicos/genética , Tirosina 3-Monooxigenasa/química , Tirosina 3-Monooxigenasa/genética , Humanos , Mutación Missense , Estructura Cuaternaria de Proteína
16.
Biochem Biophys Res Commun ; 511(1): 7-12, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30755303

RESUMEN

The formation of a mature myelin sheath in the vertebrate nervous system requires specific protein-membrane interactions. Several myelin-specific proteins are involved in stacking lipid membranes into multilayered structures around axons, and misregulation of these processes may contribute to chronic demyelinating diseases. Two key proteins in myelin membrane binding and stacking are the myelin basic protein (MBP) and protein zero (P0). Other factors, including Ca2+, are important for the regulation of myelination. We studied the effects of ionic strength and Ca2+ on the membrane interactions of MBP and the cytoplasmic domain of P0 (P0ct). MBP and P0ct bound and aggregated negatively charged lipid vesicles, while simultaneously folding, and both ionic strength and calcium had systematic effects on these interactions. When decreasing membrane net negative charge, the level and kinetics of vesicle aggregation were affected by both salt and Ca2+. The effects on lipid membrane surfaces by ions can directly affect myelin protein-membrane interactions, in addition to signalling effects in myelinating glia.


Asunto(s)
Calcio/metabolismo , Proteína Básica de Mielina/metabolismo , Proteína P0 de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Animales , Humanos , Lípidos de la Membrana/metabolismo , Ratones , Proteína Básica de Mielina/química , Proteína P0 de la Mielina/química , Concentración Osmolar , Unión Proteica , Dominios Proteicos , Pliegue de Proteína
17.
Amino Acids ; 51(2): 151-174, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30564946

RESUMEN

The endocannabinoid (eCB) system is an important part of both the human central nervous system (CNS) and peripheral tissues. It is involved in the regulation of various physiological and neuronal processes and has been associated with various diseases. The eCB system is a complex network composed of receptor molecules, their cannabinoid ligands, and enzymes regulating the synthesis, release, uptake, and degradation of the signalling molecules. Although the eCB system and the molecular processes of eCB signalling have been studied extensively over the past decades, the involved molecules and underlying signalling mechanisms have not been described in full detail. An example pose the two poorly characterised eCB-degrading enzymes α/ß-hydrolase domain protein six (ABHD6) and ABHD12, which have been shown to hydrolyse 2-arachidonoyl glycerol-the main eCB in the CNS. We review the current knowledge about the eCB system and the role of ABHD6 and ABHD12 within this important signalling system and associated diseases. Homology modelling and multiple sequence alignments highlight the structural features of the studied enzymes and their similarities, as well as the structural basis of disease-related ABHD12 mutations. However, homologies within the ABHD family are very low, and even the closest homologues have widely varying substrate preferences. Detailed experimental analyses at the molecular level will be necessary to understand these important enzymes in full detail.


Asunto(s)
Endocannabinoides/metabolismo , Metabolismo de los Lípidos/fisiología , Monoacilglicerol Lipasas/química , Monoacilglicerol Lipasas/metabolismo , Enfermedades Neurodegenerativas/enzimología , Animales , Ácidos Araquidónicos/química , Ácidos Araquidónicos/metabolismo , Ataxia/enzimología , Ataxia/etiología , Catarata/enzimología , Catarata/etiología , Biología Computacional , Endocannabinoides/química , Glicéridos/química , Glicéridos/metabolismo , Humanos , Monoacilglicerol Lipasas/genética , Mutación , Polineuropatías/enzimología , Polineuropatías/etiología , Alcamidas Poliinsaturadas/química , Alcamidas Poliinsaturadas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Retinitis Pigmentosa/enzimología , Retinitis Pigmentosa/etiología , Transducción de Señal/fisiología
18.
Biochem J ; 475(22): 3577-3593, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30327321

RESUMEN

Collagen XVIII (ColXVIII) is a non-fibrillar collagen and proteoglycan that exists in three isoforms: short, medium and long. The medium and long isoforms contain a unique N-terminal domain of unknown function, DUF959, and our sequence-based secondary structure predictions indicated that DUF959 could be an intrinsically disordered domain. Recombinant DUF959 produced in mammalian cells consisted of ∼50% glycans and had a molecular mass of 63 kDa. Circular dichroism spectroscopy confirmed the disordered character of DUF959, and static light scattering indicated a monomeric state for glycosylated DUF959 in solution. Small-angle X-ray scattering showed DUF959 to be a highly extended, flexible molecule with a maximum dimension of ∼23 nm. Glycosidase treatment demonstrated considerable amounts of O-glycosylation, and expression of DUF959 in HEK293 SimpleCells capable of synthesizing only truncated O-glycans confirmed the presence of N-acetylgalactosamine-type O-glycans. The DUF959 sequence is characterized by numerous Ser and Thr residues, and this accounts for the finding that half of the recombinant protein consists of glycans. Thus, the medium and long ColXVIII isoforms contain at their extreme N-terminus a disordered, elongated and highly O-glycosylated mucin-like domain that is not found in other collagens, and we suggest naming it the Mucin-like domain in ColXVIII (MUCL-C18). As intrinsically disordered regions and their post-translational modifications are often involved in protein interactions, our findings may point towards a role of the flexible mucin-like domain of ColXVIII as an interaction hub affecting cell signaling. Moreover, the MUCL-C18 may also serve as a lubricant at cell-extracellular matrix interfaces.


Asunto(s)
Colágeno Tipo XVIII/química , Colágeno Tipo XVIII/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Colágeno Tipo XVIII/genética , Glicosilación , Células HEK293 , Humanos , Ratones , Polisacáridos/química , Polisacáridos/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Difracción de Rayos X
19.
Molecules ; 24(17)2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443388

RESUMEN

Myelin protein 2 (P2) is a peripheral membrane protein of the vertebrate nervous system myelin sheath, having possible roles in both lipid transport and 3D molecular organization of the multilayered myelin membrane. We extended our earlier crystallographic studies on human P2 and refined its crystal structure at an ultrahigh resolution of 0.72 Å in perdeuterated form and 0.86 Å in hydrogenated form. Characteristic differences in C-H…O hydrogen bond patterns were observed between extended ß strands, kinked or ending strands, and helices. Often, side-chain C-H groups engage in hydrogen bonding with backbone carbonyl moieties. The data highlight several amino acid residues with unconventional conformations, including both bent aromatic rings and twisted guanidinium groups on arginine side chains, as well as non-planar peptide bonds. In two locations, such non-ideal conformations cluster, providing proof of local functional strain. Other ultrahigh-resolution protein structures similarly contain chemical groups, which break planarity rules. For example, in Src homology 3 (SH3) domains, a conserved bent aromatic residue is observed near the ligand binding site. Fatty acid binding protein (FABP) 3, belonging to the same family as P2, has several side chains and peptide bonds bent exactly as those in P2. We provide a high-resolution snapshot on non-ideal conformations of amino acid residues under local strain, possibly relevant to biological function. Geometric outliers observed in ultrahigh-resolution protein structures are real and likely relevant for ligand binding and conformational changes. Furthermore, the deuteration of protein and/or solvent are promising variables in protein crystal optimization.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Proteínas/química , Aminoácidos/química , Humanos , Enlace de Hidrógeno , Análisis Espectral
20.
Biochim Biophys Acta Mol Cell Res ; 1864(4): 674-686, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28130124

RESUMEN

Adenosine receptors are G protein-coupled receptors that sense extracellular adenosine to transmit intracellular signals. One of the four adenosine receptor subtypes, the adenosine A2A receptor (A2AR), has an exceptionally long intracellular C terminus (A2AR-ct) that mediates interactions with a large array of proteins, including calmodulin and α-actinin. Here, we aimed to ascertain the α-actinin 1/calmodulin interplay whilst binding to A2AR and the role of Ca2+ in this process. First, we studied the A2AR-α-actinin 1 interaction by means of native polyacrylamide gel electrophoresis, isothermal titration calorimetry, and surface plasmon resonance, using purified recombinant proteins. α-Actinin 1 binds the A2AR-ct through its distal calmodulin-like domain in a Ca2+-independent manner with a dissociation constant of 5-12µM, thus showing an ~100 times lower affinity compared to the A2AR-calmodulin/Ca2+ complex. Importantly, calmodulin displaced α-actinin 1 from the A2AR-ct in a Ca2+-dependent fashion, disrupting the A2AR-α-actinin 1 complex. Finally, we assessed the impact of Ca2+ on A2AR internalization in living cells, a function operated by the A2AR-α-actinin 1 complex. Interestingly, while Ca2+ influx did not affect constitutive A2AR endocytosis, it abolished agonist-dependent internalization. In addition, we demonstrated that the A2AR/α-actinin interaction plays a pivotal role in receptor internalization and function. Overall, our results suggest that the interplay of A2AR with calmodulin and α-actinin 1 is fine-tuned by Ca2+, a fact that might power agonist-mediated receptor internalization and function.


Asunto(s)
Actinina/química , Agonistas del Receptor de Adenosina A2/química , Adenosina/análogos & derivados , Calcio/metabolismo , Calmodulina/química , Fenetilaminas/química , Receptor de Adenosina A2A/química , Actinina/genética , Actinina/metabolismo , Adenosina/química , Adenosina/farmacología , Agonistas del Receptor de Adenosina A2/farmacología , Secuencias de Aminoácidos , Sitios de Unión , Calmodulina/genética , Calmodulina/metabolismo , Clonación Molecular , Endocitosis/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Células HEK293 , Humanos , Cinética , Fenetilaminas/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA