Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Plant Methods ; 20(1): 64, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720311

RESUMEN

BACKGROUND: Cassava leaf samples degrade quickly during storage and transportation from distant areas. Proper sampling and efficient, low-cost storage methods are critical for obtaining sufficient quality DNA and RNA for plant virus epidemiology and improving disease control understanding. This is useful when samples are collected from remote areas far from a laboratory or in developing countries where money and materials for virus diagnostics are scarce. RESULTS: The effect of sample storage duration on nucleic acid (N.A.) quality on virus detection was investigated in this study. A simple, rapid, and cost-effective CTAB-based approach (M3) for single N.A. extraction was optimized and tested alongside two existing CTAB-based methods (M1 and M2) for N.A. extraction from fresh and herbarium cassava leaves stored for; 1, 8, 26, and 56 months. The amount and quality of DNA and RNA were determined using Nanodrop 2000 c U.V.-vis Spectrophotometer and agarose gel electrophoreses. The sample degradation rate was estimated using a simple mathematical model in Matlab computational software. The results show no significant difference in mean DNA concentration between M1 and M2 but a significant difference between M3 and the other two methods at p < 0.005. The mean DNA concentration extracted using M3 was higher for 1 and 8 months of leave storage. M3 and M2 produced high concentrations at 26 and 56 months of leave storage. Using a developed scale for quality score, M3 and M2 produced high-quality DNA from fresh samples. All methods produced poor-quality DNA and RNA at 8 and 26 months of leave storage and no visual bands at the age of 56 months. Statistically, there was a significant difference in the mean DNA quality between M1 and M2, but there was no significant difference between M3 and the other two methods at p < 0.005. However, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) were readily detected by RT-PCR from RNA isolated using M3. The quality of DNA declined per storage time at 0.0493 and 0.0521/month, while RNA was 0.0678 and 0.0744/month. Compared to the existing two methods, modified CTAB extracted enough high-quality N.A. in one-third the time of the existing two methods. CONCLUSION: Our method provides cost-effective, quick, and simple processing of fresh and dry samples, which will quicken and guide the decision on when and what type of sample to process for plant disease management and surveillance actions.

2.
Afr J Agric Res ; 12(18)2017.
Artículo en Inglés | MEDLINE | ID: mdl-33282144

RESUMEN

Common bean (Phaseolus vulgaris L.) is a major legume crop, serving as a main source of dietary protein and calories and generating income for many Tanzanians. It is produced in nearly all agro-ecological zones of Tanzania. However, the average yields are low (<1000 kg/ha), which is attributed to many factors including virus diseases. The most important viruses of common bean in Tanzania are Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus (BCMNV) but other viruses have also been reported. There has never been a review of common bean virus diseases in the country, and the lack of collated information makes their management difficult. Therefore, this review focuses on (1) occurrence of different viruses of common bean in Tanzania, (2) molecular characterization of these viruses, (3) detection tools for common bean viruses in Tanzania and (4) available options for managing virus diseases in the country. Literature and nucleotide sequence database searches revealed that common bean diseases are inadequately studied and that their causal viruses have not been adequately characterized at the molecular level in Tanzania. Increased awareness on common bean virus diseases in Tanzania is expected to result into informed development of strategies for management of the same and thus increased production, which in turn has implication on nutrition and income.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA