Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Soft Matter ; 13(28): 4830-4840, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28470275

RESUMEN

Solid Polymer Electrolytes (SPEs) consisting of ternary blends of charged polymer, neutral polymer, and plasticizer or salt have received much interest for their low volatility and high flexibility of polymers with ion-selective conductivity of the charge-carrying backbone. It has been shown that in these polyelectrolyte blends, where the dielectric constant is relatively low, ionic correlations can significantly influence the miscibility, inducing phase separation even at negative values of χN. Here we present a comprehensive study of phase behavior and interfacial segregation upon the addition of a tertiary component in blends of charged and neutral homopolymers. Using a hybrid of self-consistent field and liquid state theories (SCFT-LS), we investigate the bulk miscibility and the distribution of ions across the interface, looking at interfacial adsorption and selectivity of the minority component. We demonstrate that the competition between ionic correlations and ion entropy induces complex charge-dependent selectivity that can be tuned by the value of Γ, the ionic correlation strength. We show that charge interactions can have a pronounced effect on the interfacial width and tension, especially at low χN.

2.
Sci Data ; 11(1): 828, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068152

RESUMEN

The composition and morphology of the cathode catalyst layer (CCL) have a significant impact on the performance and stability of polymer electrolyte membrane fuel cells (PEMFC). Understanding the primary degradation mechanism of the CCL and its influencing factors is crucial for optimizing PEMFC performance and durability. Within this work, we present comprehensive in-situ characterization data focused on cathode catalyst degradation. The dataset consists of 36 unique durability tests with over 4000 testing hours, including variations in the cathode ionomer to carbon ratio, platinum on carbon ratio, ionomer equivalent weight, and carbon support type. The applied accelerated stress tests were conducted with different upper potential limits and relative humidities. Characterization techniques including IV-curves, limiting current measurements, electrochemical impedance spectroscopy, and cyclic voltammetry were employed to analyse changes in performance, charge and mass transfer, and electrochemically active surface area of the catalyst. The aim of the dataset is to improve the understanding of catalyst degradation by allowing comparisons across material variations and provide practical information for other researchers in the field.

3.
ACS Cent Sci ; 5(4): 688-699, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31041389

RESUMEN

Quantitatively understanding the self-assembly of amphiphilic macromolecules at liquid-liquid interfaces is a fundamental scientific concern due to its relevance to a broad range of applications including bottom-up nanopatterning, protein encapsulation, oil recovery, drug delivery, and other technologies. Elucidating the mechanisms that drive assembly of amphiphilic macromolecules at liquid-liquid interfaces is challenging due to the combination of hydrophobic, hydrophilic, and Coulomb interactions, which require consideration of the dielectric mismatch, solvation effects, ionic correlations, and entropic factors. Here we investigate the self-assembly of a model block copolymer with various charge fractions at the chloroform-water interface. We analyze the adsorption and conformation of poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) and of the homopolymer poly(2-vinylpyridine) (P2VP) with varying charge fraction, which is controlled via a quaternization reaction and distributed randomly along the backbone. Interfacial tension measurements show that the polymer adsorption increases only marginally at low charge fractions (<5%) but increases more significantly at higher charge fractions for the copolymer, while the corresponding randomly charged P2VP homopolymer analogues display much more sensitivity to the presence of charged groups. Molecular dynamics (MD) simulations of the experimental systems reveal that the diblock copolymer (PS-b-P2VP) interfacial activity could be mediated by the formation of a rich set of complex interfacial copolymer aggregates. Circular domains to elongated stripes are observed in the simulations at the water-chloroform interface as the charge fraction increases. These structures are shown to resemble the spherical and cylindrical helicoid structures observed in bulk chloroform as the charge fraction increases. The self-assembly of charge-containing copolymers is found to be driven by the association of the charged component in the hydrophilic block, with the hydrophobic segments extending away from the hydrophilic cores into the chloroform phase.

4.
Nat Commun ; 9(1): 624, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29434200

RESUMEN

Nanocarrier administration has primarily been restricted to intermittent bolus injections with limited available options for sustained delivery in vivo. Here, we demonstrate that cylinder-to-sphere transitions of self-assembled filomicelle (FM) scaffolds can be employed for sustained delivery of monodisperse micellar nanocarriers with improved bioresorptive capacity and modularity for customization. Modular assembly of FMs from diverse block copolymer (BCP) chemistries allows in situ gelation into hydrogel scaffolds following subcutaneous injection into mice. Upon photo-oxidation or physiological oxidation, molecular payloads within FMs transfer to micellar vehicles during the morphological transition, as verified in vitro by electron microscopy and in vivo by flow cytometry. FMs composed of multiple distinct BCP fluorescent conjugates permit multimodal analysis of the scaffold's non-inflammatory bioresorption and micellar delivery to immune cell populations for one month. These scaffolds exhibit highly efficient bioresorption wherein all components participate in retention and transport of therapeutics, presenting previously unexplored mechanisms for controlled nanocarrier delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Nanoestructuras/química , Animales , Portadores de Fármacos/química , Femenino , Ratones , Micelas , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA