Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Animals (Basel) ; 11(6)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067338

RESUMEN

In teleosts, brain monoamines (dopamine and serotonin) participate in the early response to different acute stressors. However, little is known regarding their role during chronic stress. In a 2 × 2 factorial design, the influence of a high stocking density (HSD) and/or food deprivation (FD) on the brain monoaminergic activity in gilthead sea bream (Sparus aurata) was evaluated. Following a 21-day experimental design, samples from the plasma and brain regions (telencephalon, hypothalamus, and optic tectum) were collected. The dopamine (DA), serotonin (5HT), and their main metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and 5 hydroxyindoleacetic acid (5HIAA), contents were HPLC-assessed in brain tissues, and the ratios DOPAC/DA and 5HIAA/5HT were calculated as indicators of enhanced monoaminergic activity. The plasma levels of cortisol and catecholamine were also evaluated. The cortisol levels increased in fish exposed to HSD and normally fed but, also, in all FD groups, whereas the NA levels decreased in LSD-FD animals. Within the brain, the dopaminergic and serotonergic activities in telencephalon and hypothalamus increased in fish subjected to HSD and in the telencephalon of LSD-FD fish. While DA (hypothalamus) and 5HT (telencephalon) increased in the animals submitted to a HSD, food-deprived fish did not show such an increase. Taken together, our results supported the hypothesis of brain monoaminergic activity participating in maintaining and orchestrating the endocrine response to chronic stress in fish.

2.
Artículo en Inglés | MEDLINE | ID: mdl-31244768

RESUMEN

Fish have evolved a biological clock to cope with environmental cycles, so they display circadian rhythms in most physiological functions including stress response. Photoperiodic information is transduced by the pineal organ into a rhythmic secretion of melatonin, which is released into the blood circulation with high concentrations at night and low during the day. The melatonin rhythmic profile is under the control of circadian clocks in most fish (except salmonids), and it is considered as an important output of the circadian system, thus modulating most daily behavioral and physiological rhythms. Lighting conditions (intensity and spectrum) change in the underwater environment and affect fish embryo and larvae development: constant light/darkness or red lights can lead to increased malformations and mortality, whereas blue light usually results in best hatching rates and growth performance in marine fish. Many factors display daily rhythms along the hypothalamus-pituitary-interrenal (HPI) axis that controls stress response in fish, including corticotropin-releasing hormone (Crh) and its binding protein (Crhbp), proopiomelanocortin A and B (Pomca and Pomcb), and plasma cortisol, glucose, and lactate. Many of these circadian rhythms are under the control of endogenous molecular clocks, which consist of self-sustained transcriptional-translational feedback loops involving the cyclic expression of circadian clock genes (clock, bmal, per, and cry) which persists under constant light or darkness. Exposing fish to a stressor can result in altered rhythms of most stress indicators, such as cortisol, glucose, and lactate among others, as well as daily rhythms of most behavioral and physiological functions. In addition, crh and pomca expression profiles can be affected by other factors such as light spectrum, which strongly influence the expression profile of growth-related (igf1a, igf2a) genes. Additionally, the daily cycle of water temperature (warmer at day and cooler at night) is another factor that has to be considered. The response to any acute stressor is not only species dependent, but also depends on the time of the day when the stress occurs: nocturnal species show higher responses when stressed during day time, whereas diurnal fish respond stronger at night. Melatonin administration in fish has sedative effects with a reduction in locomotor activity and cortisol levels, as well as reduced liver glycogen and dopaminergic and serotonergic activities within the hypothalamus. In this paper, we are reviewing the role of environmental cycles and biological clocks on the entrainment of daily rhythms in the HPI axis and stress responses in fish.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA