Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nano Lett ; 24(23): 6889-6896, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38739156

RESUMEN

Thermal conductivity is a critical material property in numerous applications, such as those related to thermoelectric devices and heat dissipation. Effectively modulating thermal conductivity has become a great concern in the field of heat conduction. Here, a quantum modulation strategy is proposed to modulate the thermal conductivity/heat flux by exciting targeted phonons. It shows that the thermal conductivity of graphene can be tailored in the range of 1559 W m-1 K-1 (decreased to 49%) to 4093 W m-1 K-1 (increased to 128%), compared with the intrinsic value of 3189 W m-1 K-1. The effects are also observed for graphene nanoribbons and bulk silicon. The results are obtained through both density functional theory calculations and molecular dynamics simulations. This novel modulation strategy may pave the way for quantum heat conduction.

2.
J Am Chem Soc ; 146(26): 17765-17772, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38902874

RESUMEN

Chirality, a fundamental attribute of nature, significantly influences a wide range of phenomena related to physical properties, chemical reactions, biological pharmacology, and so on. As a pivotal aspect of chirality research, chirality recognition contributes to the synthesis of complex chiral products from simple chiral compounds and exhibits intricate interplay between chiral materials. However, macroscopic detection technologies cannot unveil the dynamic process and intrinsic mechanisms of single-molecule chirality recognition. Herein, we present a single-molecule detection platform based on graphene-molecule-graphene single-molecule junctions to measure the chirality recognition involving interactions between amines and chiral alcohols. This approach leads to the realization of in situ and real-time direct observation of chirality recognition at the single-molecule level, demonstrating that chiral alcohols exhibit compelling potential to induce the formation of the corresponding chiral configuration of molecules. The amalgamation of theoretical analyses with experimental findings reveals a synergistic action between electrostatic interactions and steric hindrance effects in the chirality recognition process, thus substantiating the microscopic mechanism governing the chiral structure-activity relationship. These studies open up a pathway for exploring novel chiral phenomena from the fundamental limits of chemistry, such as chiral origin and chiral amplification, and offer important insights into the precise synthesis of chiral materials.

3.
Nano Lett ; 22(23): 9418-9423, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36449564

RESUMEN

Scanning tunneling microscope (STM)-induced luminescence provides an ideal platform for electrical generation and the atomic-scale manipulation of nonclassical states of light. However, despite its extreme importance in quantum technologies, squeezed light emission with reduced quantum fluctuations has hitherto not been demonstrated in such a platform. Here, we theoretically predict that the emitted light from the plasmon mode can be squeezed in an STM single molecular junction subject to an external laser drive. Going beyond the traditional paradigm that generates squeezing with the quadratic interaction of photons, our prediction explores the molecular coherence involved in an anharmonic energy spectrum of a coupled plasmon-molecule-exciton system. Furthermore, we show that, by selectively exciting the energy ladder, the squeezed plasmon can show either sub- or super-Poissonian statistical properties. We also demonstrate that, following the same principle, the molecular excitonic mode can be squeezed simultaneously.

4.
Phys Rev Lett ; 128(23): 236401, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35749188

RESUMEN

Investigation of intermolecular electron spin interaction is of fundamental importance in both science and technology. Here, radical pairs of all-trans retinoic acid molecules on Au(111) are created using an ultralow temperature scanning tunneling microscope. Antiferromagnetic coupling between two radicals is identified by magnetic-field-dependent spectroscopy. The measured exchange energies are from 0.1 to 1.0 meV. The biradical spin coupling is mediated through O─H⋯O hydrogen bonds, as elucidated from analysis combining density functional theory calculation and a modern version of valence bond theory.


Asunto(s)
Electrones , Enlace de Hidrógeno
5.
J Chem Phys ; 157(17): 174303, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36347693

RESUMEN

Maintaining stability of single-molecular junctions (SMJs) in the presence of current flow is a prerequisite for their potential device applications. However, theoretical understanding of nonequilibrium heat transport in current-carrying SMJs is a challenging problem due to the different kinds of nonlinear interactions involved, including electron-vibration and anharmonic vibrational coupling. Here, we overcome this challenge by accelerating Langevin-type current-induced molecular dynamics using machine-learning potential derived from density functional theory. We show that SMJs with graphene electrodes generate an order of magnitude less heating than those with gold electrodes. This is rooted in the better phonon spectral overlap of graphene with molecular vibrations, rendering harmonic phonon heat transport being dominant. In contrast, in a spectrally mismatched junction with gold electrodes, anharmonic coupling becomes important to transport heat away from the molecule to surrounding electrodes. Our work paves the way for studying current-induced heat transport and energy redistribution in realistic SMJs.

6.
Nano Lett ; 21(16): 7005-7011, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34350759

RESUMEN

The Mott state in 1T-TaS2 is predicted to host quantum spin liquids (QSLs). However, its insulating mechanism is controversial due to complications from interlayer coupling. Here, we study the charge transfer state in monolayer 1T-NbSe2, an electronic analogue to TaS2 exempt from interlayer coupling, using spectroscopic imaging scanning tunneling microscopy and first-principles calculations. Monolayer NbSe2 surprisingly displays two types of star of David (SD) motifs with different charge transfer gap sizes, which are interconvertible via temperature variation. In addition, bilayer 1T-NbSe2 shows a Mott collapse by interlayer coupling. Our calculation unveils that the two types of SDs possess distinct structural distortions, altering the effective Coulomb energies of the central Nb orbital. Our calculation suggests that the charge transfer gap, the same parameter for determining the QSL regime, is tunable with strain. This finding offers a general strategy for manipulating the charge transfer state in related systems, which may be tuned into the potential QSL regime.

7.
Angew Chem Int Ed Engl ; 61(45): e202210939, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36098651

RESUMEN

Intermolecular charge transport plays a vital role in the fields of electronics, as well as biochemical systems. Here, we design supramolecular dimer junctions and investigate the effects of charge state and energy level alignment on charge transport under nanoconfinement. Incoherent tunneling caused by thermally-induced vibrations is enhanced in positively charged systems. The transition between coherent and incoherent tunneling is associated with specific molecular vibration modes. Positively charged systems with smaller torsional barriers and vibrational frequencies result in lower transition temperatures. Multiple thermal effects have a great impact on the conductance in the off-resonant tunneling, while thermally-induced vibron-assisted tunneling contributes more to the transport in the resonant tunneling. These investigations offer a deep mechanism understanding of intermolecular charge transport and facilitate the development of practical functional molecular devices.


Asunto(s)
Electrónica , Vibración , Transporte de Electrón
8.
Nano Lett ; 19(8): 5133-5139, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31276417

RESUMEN

van der Waals (vdW) heterostructures, stacking different two-dimensional materials, have opened up unprecedented opportunities to explore new physics and device concepts. Especially interesting are recently discovered two-dimensional magnetic vdW materials, providing new paradigms for spintronic applications. Here, using density functional theory (DFT) calculations, we investigate the spin-dependent electronic transport across vdW magnetic tunnel junctions (MTJs) composed of Fe3GeTe2 ferromagnetic electrodes and a graphene or hexagonal boron nitride (h-BN) spacer layer. For both types of junctions, we find that the junction resistance changes by thousands of percent when the magnetization of the electrodes is switched from parallel to antiparallel. Such a giant tunneling magnetoresistance (TMR) effect is driven by dissimilar electronic structure of the two spin-conducting channels in Fe3GeTe2, resulting in a mismatch between the incoming and outgoing Bloch states in the electrodes and thus suppressed transmission for an antiparallel-aligned MTJ. The vdW bonding between electrodes and a spacer layer makes this result virtually independent of the type of the spacer layer, making the predicted giant TMR effect robust with respect to strain, interface distance, and other parameters, which may vary in the experiment. We hope that our results will further stimulate experimental studies of vdW MTJs and pave the way for their applications in spintronics.

9.
Phys Chem Chem Phys ; 21(33): 18259-18264, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31393476

RESUMEN

The anharmonicity of phonons in a solid is ultimately rooted in the chemical bonding. However, the direct connection between phonon anharmoncity and chemical bonding is difficult to make experimentally or theoretically, mainly due to their complicated lattice structures. Here, with the help of first-principles calculations, we show that the intrinsically low lattice thermal conductivity (κ) of Bi2O2X (X = S, Se, Te) shows a strong connection to the electrostatic inter-layer coupling. We explain our results by the strong anharmonic chemical bonding between Bi and chalcogen atoms. Additionally, due to the strong anharmonicity, a large portion of phonon modes has a mean free path shorter than the average atomic distance. We employ a recently proposed two-channel model to take into account their contribution to κ.

10.
Nano Lett ; 18(11): 6826-6831, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30335393

RESUMEN

The coupling between molecular exciton and gap plasmons plays a key role in single molecular electroluminescence induced by a scanning tunneling microscope (STM). But it has been difficult to clarify the complex experimental phenomena. By employing the nonequilibrium Green's function method, we propose a general theoretical model to understand the light emission spectrum of single molecule and gap plasmons from an energy transport point of view. The coherent interaction between gap plasmons and molecular exciton leads to a prominent Fano resonance in the emission spectrum. We analyze the dependence of the Fano line shape on the system parameters, based on which we provide a unified account of several recent experimental observations. Moreover, we highlight the effect of the tip-molecule electronic coupling on the spectrum.

11.
Opt Express ; 26(23): 30444-30455, 2018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-30469918

RESUMEN

We study the decay of gap plasmons localized between a scanning tunneling microscope tip and metal substrate, excited by inelastic tunneling electrons. The overall excited energy from the tunneling electrons is divided into two categories in the form of resistive dissipation and electromagnetic radiation, which together can further be separated into four diffierent channels, including SPP channel on the tip, SPP channel on the substrate, air mode channel and direct quenching channel. In this work, we study the enhancement factor, i.e. Purcell factor, of the STM tunnel junctions, which are mediated by the nearby metallic structures. We find that the gap plasmon mode is most likely to couple to the SPP channel on the tip, rather than the SPP channel on the substrate or the air mode. The direct quenching in the apex of tip also takes a considerable portion especially in high frequency region, the enhancement factor of direct quenching in the tip is much higher than the direct quenching in the substrate. We adopt four tips with diffierent apex radii, i.e., 1 nm, 5 nm, 10 nm, 20 nm. When the apex size is small, the frequency dependent enhancement factor from the SPPs contribution has a pronounced peak at 1.55 eV, however, as the radius increases, the peak of enhancement factor in the high frequency region appears, the 1.55 eV peak becomes less dominated. This phenomenon can be attributed to the change of tip shape, in the form of mode coupling. Our results also show a relationship between the direct quenching in the substrate and in the tip. With the larger radius of apex, the ratio of these two part of energy approaches 1, which indicate that the energy distribution of direct quenching is sensitive to the shape of the tip-substrate gap.

12.
Angew Chem Int Ed Engl ; 56(39): 11769-11773, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28727903

RESUMEN

Atomic-scale mechanochemistry is realized from force exerted by a C60 -functionalized scanning tunneling microscope tip. Two conformers of tin phthalocyanine can be prepared on coinage-metal surfaces. A transition between these conformers is induced on Cu(111) and Ag(100). Density-functional calculations reveal details of this reaction. Because of the large energy barrier of the reaction and the strong interaction of SnPc with Cu(111), the process cannot be achieved by electrical means.

13.
Phys Rev Lett ; 116(2): 027201, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26824562

RESUMEN

All-trans-retinoic acid (ReA), a closed-shell organic molecule comprising only C, H, and O atoms, is investigated on a Au(111) substrate using scanning tunneling microscopy and spectroscopy. In dense arrays single ReA molecules are switched to a number of states, three of which carry a localized spin as evidenced by conductance spectroscopy in high magnetic fields. The spin of a single molecule may be reversibly switched on and off without affecting its neighbors. We suggest that ReA on Au is readily converted to a radical by the abstraction of an electron.

14.
Nano Lett ; 15(8): 5229-34, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26151091

RESUMEN

Low-dimensional electronic and glassy phononic transport are two important ingredients of highly efficient thermoelectric materials, from which two branches of thermoelectric research have emerged. One focuses on controlling electronic transport in the low dimension, while the other focuses on multiscale phonon engineering in the bulk. Recent work has benefited much from combining these two approaches, e.g., phonon engineering in low-dimensional materials. Here we propose to employ the low-dimensional electronic structure in bulk phonon-glass crystals as an alternative way to increase the thermoelectric efficiency. Through first-principles electronic structure calculations and classical molecular dynamics simulations, we show that the π-π-stacking bis(dithienothiophene) molecular crystal is a natural candidate for such an approach. This is determined by the nature of its chemical bonding. Without any optimization of the material parameters, we obtained a maximum room-temperature figure of merit, ZT, of 1.48 at optimal doping, thus validating our idea.

15.
Phys Rev Lett ; 114(9): 096801, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25793838

RESUMEN

We investigate theoretically the interplay of current-induced forces (CIFs), Joule heating, and heat transport inside a current-carrying nanoconductor. We find that the CIFs, due to the electron-phonon coherence, can control the spatial heat dissipation in the conductor. This yields a significant asymmetric concentration of excess heating (hot spot) even for a symmetric conductor. When coupled to the electrode phonons, CIFs drive different phonon heat flux into the two electrodes. First-principles calculations on realistic biased nanojunctions illustrate the importance of the effect.

16.
Phys Rev E ; 109(6-2): 065310, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39020968

RESUMEN

Electrons are the carriers of heat and electricity in materials and exhibit abundant transport phenomena such as ballistic, diffusive, and hydrodynamic behaviors in systems with different sizes. The electron Boltzmann transport equation (eBTE) is a reliable model for describing electron transport, but it is a challenging problem to efficiently obtain the numerical solutions of the eBTE within one unified scheme involving ballistic, hydrodynamics, and/or diffusive regimes. In this work, a discrete unified gas kinetic scheme (DUGKS) in the finite-volume framework is developed based on the eBTE with the Callaway relaxation model for electron transport. By reconstructing the distribution function at the cell interface, the processes of electron drift and scattering are coupled together within a single time step. Numerical tests demonstrate that the DUGKS can be adaptively applied to multiscale electron transport, across different regimes.

17.
Sci Adv ; 10(28): eado1125, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996014

RESUMEN

Chirality is an important aspect of nature, and numerous macroscopic methods have been developed to understand and control chirality. For the chiral tertiary amines, their flexible flipping process makes it possible to achieve high chiral controllability without bond formation and breaking. Here, we present a type of stable chiral single-molecule devices formed by tertiary amines, using graphene-molecule-graphene single-molecule junctions. These single-molecule devices allow real-time, in situ, and long-time measurements of the flipping process of an individual chiral nitrogen center with high temporal resolution. Temperature- and bias voltage-dependent experiments, along with theoretical investigations, revealed diverse chiral intermediates, indicating the regulation of the flipping dynamics by energy-related factors. Angle-dependent measurements further demonstrated efficient enrichment of chiral states using linearly polarized light by a symmetry-related factor. This approach offers a reliable means for understanding the chirality's origin, elucidating microscopic chirality regulation mechanisms, and aiding in the design of effective drugs.

18.
Acta Pharmacol Sin ; 33(5): 691-700, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22543708

RESUMEN

AIM: To investigate the role of Hedgehog (Hh) signaling pathway in the invasion and metastasis of human hepatocellular carcinoma (HCC). METHODS: Eighty six HCC tissues samples and HCC cell line Bel-7402 were examined. The protein expression of sonic hedgehog (Shh), nuclear glioma-associated oncogene-1 (Gli1), MMP-9 and p-ERK1/2 in HCC was analyzed using immunohistochemistry and Western blot analysis. Boyden chamber assay and wound-healing assay were used to quantify the invasion and metastasis of Bel-7402 cells. RESULTS: In 86 HCC tissue samples, the positive ratio of Shh and nucleus Gli1 was 67.44% (58/86) and 60.47% (52/86), respectively; the expression of nucleus Gli1 was correlated with the tumor pathological grade (P=0.034), and with the ability of the tumor to invade and metastasize (P=0.001); the expression of nucleus Gli1 was also correlated with p-ERK1/2 (P=0.031) and with MMP-9 (P=0.034). Neither Shh, nor nucleus Gli1 was observed in normal liver tissue. KAAD-cyclopamine (KAAD-cyc), a specific inhibitor of the Hh pathway, at the concentrations of 1 and 4 µmol/L inhibited the invasion and migration of Bel-7402 cells and decreased the expression of Gli1 in nucleus and MMP-9, p-ERK1/2 proteins in Bel-7402 cells. On the other hand, Shh, a ligand of the Hh pathway, at the concentration of 0.5 µg/mL produced opposite effects. The MAPK pathway inhibitors U0126 and PD98059 at the concentrations of 5 and 10 µmol/L inhibited invasion and metastasis of Bel-7402 cells induced by Shh, and decreased the expression of p-ERK1/2 and MMP-9. However, U0126 and PD98059 had no effect on the expression of Gli1. CONCLUSION: Hh signaling pathway mediates invasion and metastasis of human HCC by up-regulating the protein expression of MMP-9 via ERK pathway.


Asunto(s)
Carcinoma Hepatocelular/enzimología , Movimiento Celular , Proteínas Hedgehog/metabolismo , Neoplasias Hepáticas/enzimología , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Adulto , Anciano , Western Blotting , Butadienos/farmacología , Carcinoma Hepatocelular/secundario , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Cinamatos/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Flavonoides/farmacología , Proteínas Hedgehog/antagonistas & inhibidores , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Persona de Mediana Edad , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Clasificación del Tumor , Invasividad Neoplásica , Nitrilos/farmacología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Factores de Transcripción/metabolismo , Alcaloides de Veratrum/farmacología , Proteína con Dedos de Zinc GLI1
19.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 29(2): 181-3, 2012 Apr.
Artículo en Zh | MEDLINE | ID: mdl-22487829

RESUMEN

OBJECTIVE: To investigate the prognostic value of t(11; 18) (q21; q21) in gastric mucosa-associated lymphoid tissue lymphoma. METHODS: A cohort of thirty-six gastric mucosa-associated lymphoid tissue lymphoma patients who were pathologically identify diagnosis from January 1994 to June 2004 were followed up retrospectively and studied using fluorescence in situ hybridization(FISH) technique to detect t(11; 18) (q21; q21) chromosomal translocation on preservative paraffin specimen. RESULTS: Among thirty-six patients, fifteen (41.67%) were positive for t (11; 18) (q21; q21). All but one were followed up to March 2010, general median survival time (MST) was 87 months. The MST were 43 and 130 months for t(11; 18) positive and negative patients, respectively. The MST between these two groups was notably different (chi-square=29.57, P< 0.01). CONCLUSION: t(11; 18) (q21; q21) is important prognostic factor for gastric mucosa-associated lymphoid tissue lymphoma.


Asunto(s)
Cromosomas Humanos Par 11 , Cromosomas Humanos Par 18 , Linfoma de Células B de la Zona Marginal/genética , Translocación Genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Mucosa Gástrica/patología , Humanos , Linfoma de Células B de la Zona Marginal/patología , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos
20.
J Cancer ; 13(3): 1005-1018, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154466

RESUMEN

Paeoniflorin-6'-O-benzene sulfonate (CP-25) has therapeutic potential for the treatment of hepatocellular carcinoma (HCC). 5-Fluorouracil (5-Fu) has been a conventional chemotherapeutic agent for HCC. Unfortunately, the nonspecific cytotoxicity and multidrug resistance caused by long-term use limited the clinical efficacy of 5-Fu. This study was aimed to investigate whether the combination of CP-25 and 5-Fu could generate synergistic effect in inhibiting HCC. The experiments on the diethylnitrosamine (DEN) -induced mice showed that compared with applying single drugs, the combination of CP-25 and 5-Fu presented stronger inhibition in tumor nodule and volume. Meanwhile, CP-25 and 5-Fu activated the intrinsic mitochondrial apoptosis pathway induced by P53, inhibited anti-apoptotic B-cell lymphoma (Bcl-2), induced the pro-apoptotic Bcl-2-associated X protein (Bax), Cytochrome-C and caspases. In addition, the synergistic effect was also validated in Bel-7402 and HepG-2 cells in vitro. This research not only provides a novel and effective combination strategy for the therapy of HCC but also provides an experimental basis for the development of CP-25 and 5-Fu compound preparation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA