Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38003264

RESUMEN

This study investigated the impact of several priming agents on metal-tolerant and sensitive Silene vulgaris ecotypes exposed to environmentally relevant cadmium dose. We analyzed how priming-induced changes in the level of lipid, protein, and DNA oxidation contribute to calamine (Cal) and non-calamine (N-Cal) ecotype response to Cd toxicity, and whether the oxidative modifications interrelate with Cd tolerance. In non-primed ecotypes, the levels of DNA and protein oxidation were similar whereas Cal Cd tolerance was manifested in reduced lipid peroxidation. In both ecotypes protective action of salicylic acid (SA) and nitric oxide (NO) priming was observed. SA stimulated growth and reduced lipid and DNA oxidation at most, while NO protected DNA from fragmentation. Priming with hydrogen peroxide reduced biomass and induced DNA oxidation. In N-Cal, priming diminished Cd accumulation and oxidative activity, whereas in Cal, it merely affected Cd uptake and induced protein carbonylation. The study showed that priming did not stimulate extra stress resistance in the tolerant ecotype but induced metabolic remodeling. In turn, the lack of adaptive tolerance made the sensitive ecotype more responsive to the benefits of the primed state. These findings could facilitate priming exploitation with a view of enhancing metallophyte and non-metallophyte suitability for phytoremediation and land revegetation.


Asunto(s)
Cadmio , Silene , Cadmio/toxicidad , Cadmio/metabolismo , Ecotipo , Silene/genética , ADN/metabolismo , Lípidos
2.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37445848

RESUMEN

The main aim of this study was to understand the regulation of the biosynthesis of phytohormones as signaling molecules in the defense mechanisms of pea seedlings during the application of abiotic and biotic stress factors. It was important to identify this regulation at the molecular level in Pisum sativum L. seedlings under the influence of various concentrations of lead-i.e., a low concentration increasing plant metabolism, causing a hormetic effect, and a high dose causing a sublethal effect-and during feeding of a phytophagous insect with a piercing-sucking mouthpart-i.e., pea aphid (Acyrthosiphon pisum (Harris)). The aim of the study was to determine the expression level of genes encoding enzymes of the biosynthesis of signaling molecules such as phytohormones-i.e., jasmonates (JA/MeJA), ethylene (ET) and abscisic acid (ABA). Real-time qPCR was applied to analyze the expression of genes encoding enzymes involved in the regulation of the biosynthesis of JA/MeJA (lipoxygenase 1 (LOX1), lipoxygenase 2 (LOX2), 12-oxophytodienoate reductase 1 (OPR1) and jasmonic acid-amido synthetase (JAR1)), ET (1-aminocyclopropane-1-carboxylate synthase 3 (ACS3)) and ABA (9-cis-epoxycarotenoid dioxygenase (NCED) and aldehyde oxidase 1 (AO1)). In response to the abovementioned stress factors-i.e., abiotic and biotic stressors acting independently or simultaneously-the expression of the LOX1, LOX2, OPR1, JAR1, ACS3, NCED and AO1 genes at both sublethal and hormetic doses increased. Particularly high levels of the relative expression of the tested genes in pea seedlings growing at sublethal doses of lead and colonized by A. pisum compared to the control were noticeable. A hormetic dose of lead induced high expression levels of the JAR1, OPR1 and ACS3 genes, especially in leaves. Moreover, an increase in the concentration of phytohormones such as jasmonates (JA and MeJA) and aminococyclopropane-1-carboxylic acid (ACC)-ethylene (ET) precursor was observed. The results of this study indicate that the response of pea seedlings to lead and A. pisum aphid infestation differed greatly at both the gene expression and metabolic levels. The intensity of these defense responses depended on the organ, the metal dose and direct contact of the stress factor with the organ.


Asunto(s)
Áfidos , Reguladores del Crecimiento de las Plantas , Animales , Reguladores del Crecimiento de las Plantas/metabolismo , Pisum sativum/metabolismo , Áfidos/fisiología , Etilenos/metabolismo , Ácido Abscísico/metabolismo , Plantones/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Int J Mol Sci ; 23(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35563551

RESUMEN

Due to their role as energy and carbon sources and their regulatory functions, sugars influence all phases of the plant life cycle, interact with other signaling molecules, including phytohormones, and control plant growth and development [...].


Asunto(s)
Reguladores del Crecimiento de las Plantas , Azúcares , Desarrollo de la Planta , Plantas , Transducción de Señal
4.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499563

RESUMEN

In response to environmental stress, plants activate complex signalling, including being dependent on reactive oxygen-nitrogen-sulphur species. One of the key abiotic stresses is drought. As a result of drought, changes in the level of hydration of the plant occur, which obviously entails various metabolic alternations. The primary aim of this study was to determine the relationship between the response of barley to drought and the intensity of stress, therefore investigations were performed under various levels of water saturation deficit (WSD) in leaves at 15%, 30%, and 50%. In barley subjected to drought, most significant changes occurred under a slight dehydration level at 15%. It was observed that the gene expression of 9-cis-epoxycarotenoid dioxygenases, enzymes involved in ABA biosynthesis, increased significantly, and led to a higher concentration of ABA. This was most likely the result of an increase in the gene expression and enzyme activity of L-cysteine desulfhydrase, which is responsible for H2S synthesis. Our results suggest that the differential water deficit in leaves underlies the activation of an appropriate defence, with ABA metabolism at the centre of these processes. Furthermore, at 15% WSD, a dominant contribution of H2O2-dependent signalling was noted, but at 30% and 50% WSD, significant NO-dependent signalling occurred.


Asunto(s)
Hordeum , Hordeum/metabolismo , Ácido Abscísico/metabolismo , Agua/metabolismo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Sequías , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Estrés Fisiológico/genética
5.
Plant Cell Rep ; 39(12): 1719-1741, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32955612

RESUMEN

KEY MESSAGE: Defence responses of cyst nematode and/or wheat curl mite infested barley engage the altered reactive oxygen species production, antioxidant machinery, carbon dioxide assimilation and photosynthesis efficiency. The primary aim of this study was to determine how barley responds to two pests infesting separately or at once; thus barley was inoculated with Heterodera filipjevi (Madzhidov) Stelter (cereal cyst nematode; CCN) and Aceria tosichella Keifer (wheat curl mite; WCM). To verify hypothesis about the involvement of redox metabolism and photosynthesis in barley defence responses, biochemical, photosynthesis efficiency and chlorophyll a fluorescence measurements as well as transmission electron microscopy were implemented. Inoculation with WCM (apart from or with CCN) brought about a significant suppression in the efficiency of electron transport outside photosystem II reaction centres. This limitation was an effect of diminished pool of rapidly reducing plastoquinone and decreased total electron carriers. Infestation with WCM (apart from or with CCN) also significantly restricted the electron transport on the photosystem I acceptor side, therefore produced reactive oxygen species oxidized lipids in cells of WCM and double infested plants and proteins in cells of WCM-infested plants. The level of hydrogen peroxide was significantly decreased in double infested plants because of glutathione-ascorbate cycle involvement. The inhibition of nitrosoglutathione reductase promoted the accumulation of S-nitrosoglutathione increasing antioxidant capacity in cells of double infested plants. Moreover, enhanced arginase activity in WCM-infested plants could stimulate synthesis of polyamines participating in plant antioxidant response. Infestation with WCM (apart from or with CCN) significantly reduced the efficiency of carbon dioxide assimilation by barley leaves, whereas infection only with CCN expanded photosynthesis efficiency. These were accompanied with the ultrastructural changes in chloroplasts during CCN and WCM infestation.


Asunto(s)
Hordeum/parasitología , Interacciones Huésped-Parásitos/fisiología , Ácaros/patogenicidad , Hojas de la Planta/metabolismo , Tylenchoidea/patogenicidad , Animales , Cloroplastos/parasitología , Cloroplastos/ultraestructura , Enzimas/metabolismo , Hordeum/fisiología , Fenoles/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/parasitología , Proteínas de Plantas/metabolismo , Carbonilación Proteica , Especies Reactivas de Oxígeno/metabolismo
6.
Ecotoxicol Environ Saf ; 204: 111086, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32781345

RESUMEN

In the present research, Silene vulgaris as a representative species growing on both unpolluted and heavy metal (HM) polluted terrains were used to identify ecotype-specific responses to metallic stress. Growth, cell ultrastructure and element accumulations were compared between non-metallicolous (NM), calamine (CAL) and serpentine (SER) specimens untreated with HMs and treated with Pb, Cd and Zn ions under in vitro conditions. Moreover, proteins' modifications related to their level, carbonylation and degradations via vacuolar proteases were verified and linked with potential mechanisms to cope with ions toxicity. Our experiment revealed diversified strategy of HM uptake in NM and both metallicolous ecotypes, in which antagonistic relationship of Zn and Pb/Cd ions provided survival benefits for the whole organism. Despite this similarity, growth rate and metabolic pathways induced in CAL and SER shoots varied significantly. Exposition to HMs in CAL culture led to drop in protein level by approximately 16% compared to the control. This parameter nearly correlated with the enhanced activity of proteases at pH 5.2 as well as possible glutamate changes to proline and reduced glutathione, resulting in intensified growth and first signs of cell senescence. In turn, SER shoots were characterized by growth retardation (to 53% of the control), although protein level and carbonylation were not modified, while a deeper insight into protein network showed its remodeling towards production of polyamines and 2-oxoglutarate delivered to the Krebs cycle. Contrary, an uncontrolled HM influx in NM shoots contributed to morpho-structural disorders accompanied by an increase activity of proteases involved in the degradation of oxidized proteins, what pointed to metal-induced autophagy. Taken together, S. vulgaris ecotypes respond to stress by triggering various mechanisms engaged their survival and/or death under HM treatment.


Asunto(s)
Cadmio/toxicidad , Plomo/toxicidad , Proteínas de Plantas/metabolismo , Silene/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Zinc/toxicidad , Autofagia/efectos de los fármacos , Bioacumulación/efectos de los fármacos , Cadmio/metabolismo , Ecotipo , Glutatión/metabolismo , Plomo/metabolismo , Modelos Teóricos , Estrés Oxidativo/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Brotes de la Planta/ultraestructura , Silene/crecimiento & desarrollo , Silene/metabolismo , Silene/ultraestructura , Contaminantes del Suelo/metabolismo , Zinc/metabolismo
7.
Int J Mol Sci ; 21(13)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610484

RESUMEN

Abscisic acid (ABA) is well-known phytohormone involved in the control of plant natural developmental processes, as well as the stress response. Although in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) its role in mechanism of the tolerance to most common abiotic stresses, such as drought, salinity, or extreme temperatures seems to be fairly well recognized, not many authors considered that changes in ABA content may also influence the sensitivity of cereals to adverse environmental factors, e.g., by accelerating senescence, lowering pollen fertility, and inducing seed dormancy. Moreover, recently, ABA has also been regarded as an element of the biotic stress response; however, its role is still highly unclear. Many studies connect the susceptibility to various diseases with increased concentration of this phytohormone. Therefore, in contrast to the original assumptions, the role of ABA in response to biotic and abiotic stress does not always have to be associated with survival mechanisms; on the contrary, in some cases, abscisic acid can be one of the factors that increases the susceptibility of plants to adverse biotic and abiotic environmental factors.


Asunto(s)
Ácido Abscísico/farmacología , Grano Comestible/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Ácido Abscísico/metabolismo , Sequías , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/efectos de los fármacos , Hordeum/genética , Hordeum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Salinidad , Tolerancia a la Sal/efectos de los fármacos , Estrés Fisiológico/fisiología , Triticum/genética , Triticum/metabolismo
8.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019571

RESUMEN

The primary aim of this study was to determine the relationship between soluble sugar levels (sucrose, glucose, or fructose) in yellow lupine embryo axes and the pathogenicity of the hemibiotrophic fungus Fusarium oxysporum f. sp. Schlecht lupini. The first step of this study was to determine the effect of exogenous saccharides on the growth and sporulation of F. oxysporum. The second one focused on estimating the levels of ergosterol as a fungal growth indicator in infected embryo axes cultured in vitro on sugar containing-medium or without it. The third aim of this study was to record the levels of the mycotoxin moniliformin as the most characteristic secondary metabolite of F. oxysporum in the infected embryo axes with the high sugar medium and without it. Additionally, morphometric measurements, i.e., the length and fresh weight of embryo axes, were done. The levels of ergosterol were the highest in infected embryo axes with a sugar deficit. At the same time, significant accumulation of the mycotoxin moniliformin was recorded in those tissues. Furthermore, it was found that the presence of sugars in water agar medium inhibited the sporulation of the pathogenic fungus F. oxysporum in relation to the control (sporulation of the pathogen on medium without sugar), the strongest inhibiting effect was observed in the case of glucose. Infection caused by F. oxysporum significantly limited the growth of embryo axes, but this effect was more visible on infected axes cultured under sugar deficiency than on the ones cultured with soluble sugars. The obtained results thus showed that high sugar levels may lead to reduced production of mycotoxins by F. oxysporum, limiting infection development and fusariosis.


Asunto(s)
Fructosa/farmacología , Fusarium/efectos de los fármacos , Glucosa/farmacología , Semillas/efectos de los fármacos , Esporas Fúngicas/efectos de los fármacos , Sacarosa/farmacología , Medios de Cultivo/química , Medios de Cultivo/farmacología , Ciclobutanos/antagonistas & inhibidores , Ciclobutanos/metabolismo , Ergosterol/metabolismo , Fructosa/metabolismo , Fusarium/crecimiento & desarrollo , Fusarium/patogenicidad , Glucosa/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Lupinus/efectos de los fármacos , Lupinus/crecimiento & desarrollo , Lupinus/metabolismo , Lupinus/microbiología , Micotoxinas/antagonistas & inhibidores , Micotoxinas/biosíntesis , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/microbiología , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Esporas Fúngicas/patogenicidad , Sacarosa/metabolismo
9.
Int J Mol Sci ; 21(11)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531938

RESUMEN

Soluble sugars such as sucrose, glucose and fructose in plant host cells not only play the role as donors of carbon skeletons, but they may also induce metabolic signals influencing the expression of defense genes. These metabolites function in a complex network with many bioactive molecules, which independently or in dialogue, induce successive defense mechanisms. The aim of this study was to determine the involvement of sucrose and monosaccharides as signaling molecules in the regulation of the levels of phytohormones and hydrogen peroxide participating in the defense responses of Lupinus luteus L. to a hemibiotrophic fungus Fusarium oxysporum Schlecht f. sp. lupini. A positive correlation between the level of sugars and postinfection accumulation of salicylic acid and its glucoside, as well as abscisic acid, was noted. The stimulatory effect of sugars on the production of ethylene was also reported. The protective role of soluble sugars in embryo axes of yellow lupine was seen in the limited development of infection and fusariosis. These results provide evidence for the enhanced generation of signaling molecules both by sugar alone as well as during the crosstalk between sugars and infection caused by F. oxysporum. However, a considerable postinfection increase in the level of these signaling molecules under the influence of sugars was recorded. The duration of the postinfection generation of these molecules in yellow lupine was also variable.


Asunto(s)
Fusarium/patogenicidad , Lupinus/metabolismo , Lupinus/microbiología , Enfermedades de las Plantas/etiología , Azúcares/metabolismo , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxigenasas/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Semillas/metabolismo , Superóxido Dismutasa/metabolismo
10.
Planta ; 249(6): 1761-1778, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30826883

RESUMEN

MAIN CONCLUSION: Results provide significant comparison of leaf anatomy, pigment content, antioxidant response and phenolic profile between individuals from miscellaneous populations and describe unified cultivation protocols for further research on stress biology. The plant communities growing on heavy metal-polluted areas have attracted considerable attention due to their unique ability to tolerate enormous amounts of toxic ions. Three ecotypes of Silene vulgaris representing calamine (CAL), serpentine (SER) and non-metallicolous (NM) populations were evaluated to reveal specific adaptation traits to harsh environment. CAL leaves presented a distinct anatomical pattern compared to leaves of SER and NM plants, pointing to their xeromorphic adaptation. These differences were accompanied by divergent accumulation and composition of photosynthetic pigments as well as antioxidant enzyme activity. In CAL ecotype, the mechanism of reactive oxygen species scavenging is based on the joint action of superoxide dismutase and catalase, but in SER ecotype on superoxide dismutase and guaiacol-type peroxidase. On the contrary, the concentration of phenylpropanoids and flavonols in the ecotypes was unchanged, implying the existence of similar pathways of their synthesis/degradation functioning in CAL and SER populations. The tested specimens showed genetic variation (atpA/MspI marker). Based on diversification of S. vulgaris populations, we focused on the elaboration of similar in vitro conditions for synchronous cultivation of various ecotypes. The most balanced shoot culture growth was obtained on MS medium containing 0.1 mg l-1 NAA and 0.25 mg l-1 BA, while the most abundant callogenesis was observed on MS medium enriched with 0.5 mg l-1 NAA and 5.0 mg l-1 BA. For the first time, unified in vitro protocols were described for metallophytes providing the opportunity to conduct basic and applied research on stress biology and tolerance mechanisms under freely controlled conditions.


Asunto(s)
Adaptación Fisiológica , Antioxidantes/metabolismo , Metales Pesados/metabolismo , Silene/fisiología , Catalasa/metabolismo , Ecosistema , Ecotipo , Peroxidasa , Pigmentos Biológicos/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Polonia , Polimorfismo de Longitud del Fragmento de Restricción , Especies Reactivas de Oxígeno/metabolismo , Silene/anatomía & histología , Silene/genética , Contaminantes del Suelo/metabolismo , Estrés Fisiológico , Superóxido Dismutasa/metabolismo
11.
Int J Mol Sci ; 20(13)2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31247908

RESUMEN

Heavy metals are an interesting group of trace elements (TEs). Some of them are minutely required for normal plant growth and development, while others have unknown biological actions. They may cause injury when they are applied in an elevated concentration, regardless of the importance for the plant functioning. On the other hand, their application may help to alleviate various abiotic stresses. In this review, both the deleterious and beneficial effects of metallic trace elements from their uptake by roots and leaves, through toxicity, up to the regulation of physiological and molecular mechanisms that are associated with plant protection against stress conditions have been briefly discussed. We have highlighted the involvement of metallic ions in mitigating oxidative stress by the activation of various antioxidant enzymes and emphasized the phenomenon of low-dose stimulation that is caused by non-essential, potentially poisonous elements called hormesis, which is recently one of the most studied issues. Finally, we have described the evolutionary consequences of long-term exposure to metallic elements, resulting in the development of unique assemblages of vegetation, classified as metallophytes, which constitute excellent model systems for research on metal accumulation and tolerance. Taken together, the paper can provide a novel insight into the toxicity concept, since both dose- and genotype-dependent response to the presence of metallic trace elements has been comprehensively explained.


Asunto(s)
Metales/metabolismo , Fenómenos Fisiológicos de las Plantas , Plantas/metabolismo , Estrés Fisiológico , Oligoelementos/metabolismo , Hormesis , Metales/toxicidad , Metales Pesados/metabolismo , Metales Pesados/toxicidad , Estrés Oxidativo , Desarrollo de la Planta , Especies Reactivas de Oxígeno/metabolismo , Oligoelementos/toxicidad
12.
Ecotoxicol Environ Saf ; 161: 305-317, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29890432

RESUMEN

The response of metallicolous (M) and nonmetallicolous (NM) Alyssum montanum ecotypes to multi-metal stress was investigated under in vitro condition and compared in this study. Shoot cultures were simultaneously treated with 0.7 mM ZnSO4, 3.0 µM Pb(NO3)2 and 16.4 µM CdCl2 for 8 weeks and evaluated for their morphogenetic and ultrastructural reaction, growth tolerance as well as ability to Zn, Pb, and Cd uptake. Moreover, tissue localization and concentrations of antioxidant compounds were determined in order to elucidate the potential role of ROS-scavenging machinery in plant tolerance to metal toxicity. The results clearly demonstrated that M specimens treated with heavy metals showed less phytotoxic symptoms and low level of lipid peroxidation than reference NM one. The enhanced tolerance of M ecotype resulted from heavy metals detoxification in trichomes and intracellular leaf compartments as well as balanced ROS accumulation. The inactivation of ROS in M plants was based on peroxidase-flavonoid system, while in NM plants such relationship was not detected and amounts of antioxidant enzymes or phenolic compounds was comparable to untreated specimens or decreased significantly. Considering the procumbent growth of such hemicryptophyte which reproduce effectively in the presence of heavy metals but is characterized by low biomass production, it is proposed to exploit M ecotype of A. montanum in revegetation schemes of polluted calamine wastes to provide the prompt stabilization of areas prone to erosion.


Asunto(s)
Brassicaceae/efectos de los fármacos , Ecotipo , Metales Pesados/toxicidad , Contaminantes del Suelo/toxicidad , Biodegradación Ambiental , Brassicaceae/metabolismo , Tolerancia a Medicamentos , Peroxidación de Lípido , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo
13.
J Pineal Res ; 60(1): 109-17, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26514550

RESUMEN

Excessive activity of NADPH oxidase (Nox) is considered to be of importance for the progress of diabetic nephropathy. The aim of the study was to elucidate the effect of melatonin, known for its nephroprotective properties, on Nox activity under diabetic conditions. The experiments were performed on three groups of animals: (i) untreated lean (?/+) Zucker diabetic fatty (ZDF) rats; (ii) untreated obese diabetic (fa/fa) ZDF rats; and (iii) ZDF fa/fa rats treated with melatonin (20 mg/L) in drinking water. Urinary albumin excretion was measured weekly. After 4 wk of the treatment, the following parameters were determined in kidney cortex: Nox activity, expression of subunits of the enzyme, their phosphorylation and subcellular distribution. Histological studies were also performed. Compared to ?/+ controls, ZDF fa/fa rats exhibited increased renal Nox activity, augmented expression of Nox4 and p47(phox) subunits, elevated level of p47(phox) phosphorylation, and enlarged phospho-p47(phox) and p67(phox) content in membrane. Melatonin administration to ZDF fa/fa rats resulted in the improvement of renal functions, as manifested by considerable attenuation of albuminuria and some amelioration of structural abnormalities. The treatment turned out to nearly normalize Nox activity, which was accompanied by considerably lowered expression and diminished membrane distribution of regulatory subunits, that is, phospho-p47(phox) and p67(phox) . Thus, it is concluded that: (i) melatonin beneficial action against diabetic nephropathy involves attenuation of the excessive activity of Nox; and (ii) the mechanism of melatonin inhibitory effect on Nox is based on the mitigation of expression and membrane translocation of its regulatory subunits.


Asunto(s)
Membrana Celular/enzimología , Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Melatonina/farmacología , NADH NADPH Oxidorreductasas/biosíntesis , NADPH Oxidasas/biosíntesis , Animales , Membrana Celular/patología , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/enzimología , Nefropatías Diabéticas/patología , Ratas , Ratas Zucker
14.
Plants (Basel) ; 13(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38891357

RESUMEN

There is still a need to investigate the relationships between glycophytes and halophytes and the many biotic and abiotic factors in their natural environments. Therefore, we study the effects of the type of environment on the ecophysiological responses and condition of the glycophyte Elder Sambucus nigra L., the macrophyte Common Reed Phragmites australis (Cav.) Trin. ex Steud., the facultative halophyte Weeping Alkaligrass Puccinellia distans (Jacq.) Parl, and the obligate halophyte Common Glasswort Salicornia europaea L. in a saline-disturbed anthropogenic region of central Poland. We analyzed the effects of salinity, acidity, and soil organic matter on shoot length, lipoperoxidation, and proline in roots and green parts, and evaluated plant responses to environmental disturbance, which allowed for the comparison of adaptation strategies. The studies were carried out in (1) "sodium production" (near sodium factories), (2) "anthropogenic environments" (waste dumps, agroecosystems, calcium deposits, post-production tanks), (3) "wetland environments" (near river channels and riparian areas), and (4) "control" (natural, unpolluted environments). Green parts of plants are better suited to indicate environmental stress than roots. Their higher structural MDA membrane damage is related to the transport of toxic ions to the shoots by a rapid transpiration stream in the xylem. We found high salinity to be the main factor inducing growth and found it to be correlated with the high pH effect on proline increase in glycophytes (Elder, Reed) and Weeping Alkaligrass, in contrast to Common Glasswort. We suggest that proline accumulation allows osmotic adjustment in the green parts of reeds and alkaligrasses, but may have another function (in Elder). Common Glasswort accumulates large amounts of Na+, which is energetically more effective than proline accumulation for osmotic adjustment. Organic matter affects plant growth and proline levels, but soil salinity and pH alter nutrient availability. Plant distribution along the salinity gradient indicates that Elder is the most salt-sensitive species compared to Reed, Alkaligrass, and Glasswort. Salinity and the lack of control of thick reeds, which compete with other plant groups, affect the distribution of halophytes in saline environments.

15.
Med Pr ; 64(4): 565-8, 2013.
Artículo en Polaco | MEDLINE | ID: mdl-24502120

RESUMEN

Lead (Pb) that belongs to heavy metals is one of the major pollution components of the environment. Occupational and environmental exposure to lead can cause its absorption by the body and consequently exert toxic effects in the liver. In this paper biochemical determinants of hepatotoxicity caused by lead are presented. Generation of reactive oxygen species, disturbances in the cellular antioxidant system, lipid peroxidation, inhibition of enzymatic proteins and intercellular signaling are also discussed.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Exposición a Riesgos Ambientales/efectos adversos , Intoxicación por Plomo/prevención & control , Enfermedades Profesionales/inducido químicamente , Enfermedad Hepática Inducida por Sustancias y Drogas/epidemiología , Humanos , Plomo/toxicidad , Intoxicación por Plomo/epidemiología , Enfermedades Profesionales/prevención & control , Estrés Oxidativo/efectos de los fármacos , Factores de Riesgo
16.
Plants (Basel) ; 12(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36903901

RESUMEN

Plants experience a wide array of external factors, some of which negatively affect their metabolism, growth, and development [...].

17.
Biology (Basel) ; 12(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37508359

RESUMEN

Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological processes in plants, including responses to biotic and abiotic stresses. Changes in endogenous NO concentration lead to activation/deactivation of NO signaling and NO-related processes. This paper presents the current state of knowledge on NO biosynthesis and scavenging pathways in plant cells and highlights the role of NO in post-translational modifications of proteins (S-nitrosylation, nitration, and phosphorylation) in plants under optimal and stressful environmental conditions. Particular attention was paid to the interactions of NO with other signaling molecules: reactive oxygen species, abscisic acid, auxins (e.g., indole-3-acetic acid), salicylic acid, and jasmonic acid. In addition, potential common patterns of NO-dependent defense responses against attack and feeding by parasitic and molting Ecdysozoa species such as nematodes, insects, and arachnids were characterized. Our review definitely highlights the need for further research on the involvement of NO in interactions between host plants and Ecdysozoa parasites, especially arachnids.

18.
Plants (Basel) ; 12(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37836144

RESUMEN

The responses of plants to stress factors are extremely elaborate [...].

19.
Plants (Basel) ; 11(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35448737

RESUMEN

Cereal plants under abiotic or biotic stressors to survive unfavourable conditions and continue growth and development, rapidly and precisely identify external stimuli and activate complex molecular, biochemical, and physiological responses. To elicit a response to the stress factors, interactions between reactive oxygen and nitrogen species, calcium ions, mitogen-activated protein kinases, calcium-dependent protein kinases, calcineurin B-like interacting protein kinase, phytohormones and transcription factors occur. The integration of all these elements enables the change of gene expression, and the release of the antioxidant defence and protein repair systems. There are still numerous gaps in knowledge on these subjects in the literature caused by the multitude of signalling cascade components, simultaneous activation of multiple pathways and the intersection of their individual elements in response to both single and multiple stresses. Here, signal transduction pathways in cereal plants under drought, salinity, heavy metal stress, pathogen, and pest attack, as well as the crosstalk between the reactions during double stress responses are discussed. This article is a summary of the latest discoveries on signal transduction pathways and it integrates the available information to better outline the whole research problem for future research challenges as well as for the creative breeding of stress-tolerant cultivars of cereals.

20.
Cells ; 11(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35456031

RESUMEN

Abscisic acid (ABA) is a phytohormone that plays a key role in regulating several developmental processes as well as in response to stressful conditions such as drought. Activation of the ABA signaling cascade allows the induction of an appropriate physiological response. The basic components of the ABA signaling pathway have been recognized and characterized in recent years. Pyrabactin resistance, pyrabactin resistance-like, and the regulatory component of ABA receptors (PYR/PYL/RCAR) are the major components responsible for the regulation of the ABA signaling pathway. Here, we review recent findings concerning the PYR/PYL/RCAR receptor structure, function, and interaction with other components of the ABA signaling pathway as well as the termination mechanism of ABA signals in plant cells. Since ABA is one of the basic elements related to abiotic stress, which is increasingly common in the era of climate changes, understanding the perception and transduction of the signal related to this phytohormone is of paramount importance in further increasing crop tolerance to various stress factors.


Asunto(s)
Ácido Abscísico , Reguladores del Crecimiento de las Plantas , Ácido Abscísico/metabolismo , Proteínas Portadoras , Sequías , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA