Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Ecol Lett ; 27(7): e14461, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38953253

RESUMEN

Under the recently adopted Kunming-Montreal Global Biodiversity Framework, 196 Parties committed to reporting the status of genetic diversity for all species. To facilitate reporting, three genetic diversity indicators were developed, two of which focus on processes contributing to genetic diversity conservation: maintaining genetically distinct populations and ensuring populations are large enough to maintain genetic diversity. The major advantage of these indicators is that they can be estimated with or without DNA-based data. However, demonstrating their feasibility requires addressing the methodological challenges of using data gathered from diverse sources, across diverse taxonomic groups, and for countries of varying socio-economic status and biodiversity levels. Here, we assess the genetic indicators for 919 taxa, representing 5271 populations across nine countries, including megadiverse countries and developing economies. Eighty-three percent of the taxa assessed had data available to calculate at least one indicator. Our results show that although the majority of species maintain most populations, 58% of species have populations too small to maintain genetic diversity. Moreover, genetic indicator values suggest that IUCN Red List status and other initiatives fail to assess genetic status, highlighting the critical importance of genetic indicators.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Variación Genética , Animales
2.
Mol Ecol ; 33(2): e17213, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38014725

RESUMEN

International policy recently adopted commitments to maintain genetic diversity in wild populations to secure their adaptive potential, including metrics to monitor temporal trends in genetic diversity - so-called indicators. A national programme for assessing trends in genetic diversity was recently initiated in Sweden. Relating to this effort, we systematically assess contemporary genome-wide temporal trends (40 years) in wild populations using the newly adopted indicators and whole genome sequencing (WGS). We use pooled and individual WGS data from brown trout (Salmo trutta) in eight alpine lakes in protected areas. Observed temporal trends in diversity metrics (nucleotide diversity, Watterson's Ï´ and heterozygosity) lie within proposed acceptable threshold values for six of the lakes, but with consistently low values in lakes above the tree line and declines observed in these northern-most lakes. Local effective population size is low in all lakes, highlighting the importance of continued protection of interconnected systems to allow genetic connectivity for long-term viability of these populations. Inbreeding (FROH ) spans 10%-30% and is mostly represented by ancient (<1 Mb) runs of homozygosity, with observations of little change in mutational load. We also investigate adaptive dynamics over evolutionarily short time frames (a few generations); identifying putative parallel selection across all lakes within a gene pertaining to skin pigmentation as well as candidates of selection unique to specific lakes and lake systems involved in reproduction and immunity. We demonstrate the utility of WGS for systematic monitoring of natural populations, a priority concern if genetic diversity is to be protected.


Asunto(s)
Variación Genética , Genoma , Animales , Variación Genética/genética , Genoma/genética , Trucha/genética , Endogamia , Densidad de Población , Lagos
3.
Conserv Genet ; 24(2): 181-191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36683963

RESUMEN

Genetic diversity among and within populations of all species is necessary for people and nature to survive and thrive in a changing world. Over the past three years, commitments for conserving genetic diversity have become more ambitious and specific under the Convention on Biological Diversity's (CBD) draft post-2020 global biodiversity framework (GBF). This Perspective article comments on how goals and targets of the GBF have evolved, the improvements that are still needed, lessons learned from this process, and connections between goals and targets and the actions and reporting that will be needed to maintain, protect, manage and monitor genetic diversity. It is possible and necessary that the GBF strives to maintain genetic diversity within and among populations of all species, to restore genetic connectivity, and to develop national genetic conservation strategies, and to report on these using proposed, feasible indicators.

4.
Acta Biotheor ; 71(3): 19, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37458852

RESUMEN

The variance effective population size ([Formula: see text]) is frequently used to quantify the expected rate at which a population's allele frequencies change over time. The purpose of this paper is to find expressions for the global [Formula: see text] of a spatially structured population that are of interest for conservation of species. Since [Formula: see text] depends on allele frequency change, we start by dividing the cause of allele frequency change into genetic drift within subpopulations (I) and a second component mainly due to migration between subpopulations (II). We investigate in detail how these two components depend on the way in which subpopulations are weighted as well as their dependence on parameters of the model such a migration rates, and local effective and census sizes. It is shown that under certain conditions the impact of II is eliminated, and [Formula: see text] of the metapopulation is maximized, when subpopulations are weighted proportionally to their long term reproductive contributions. This maximal [Formula: see text] is the sought for global effective size, since it approximates the gene diversity effective size [Formula: see text], a quantifier of the rate of loss of genetic diversity that is relevant for conservation of species and populations. We also propose two novel versions of [Formula: see text], one of which (the backward version of [Formula: see text]) is most stable, exists for most populations, and is closer to [Formula: see text] than the classical notion of [Formula: see text]. Expressions for the optimal length of the time interval for measuring genetic change are developed, that make it possible to estimate any version of [Formula: see text] with maximal accuracy.


Asunto(s)
Flujo Genético , Animales , Frecuencia de los Genes , Densidad de Población , Tiempo
5.
Mol Ecol ; 31(24): 6422-6439, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36170147

RESUMEN

Genetic diversity is the basis for population adaptation and long-term survival, yet rarely considered in biodiversity monitoring. One key issue is the need for useful and straightforward indicators of genetic diversity. We monitored genetic diversity over 40 years (1970-2010) in metapopulations of brown trout (Salmo trutta) inhabiting 27 small mountain lakes representing 10 lake systems in central Sweden using >1200 fish per time point. We tested six newly proposed indicators; three were designed for broad, international use in the UN Convention on Biological Diversity (CBD) and are currently applied in several countries. The other three were recently elaborated for national use by a Swedish science-management effort and applied for the first time here. The Swedish indicators use molecular genetic data to monitor genetic diversity within and between populations (indicators ΔH and ΔFST , respectively) and assess the effective population size (Ne -indicator). We identified 29 genetically distinct populations, all retained over time. Twelve of the 27 lakes harboured more than one population indicating that brown trout biodiversity hidden as cryptic, sympatric populations are more common than recognized. The Ne indicator showed values below the threshold (Ne ≤ 500) in 20 populations with five showing Ne < 100. Statistically significant genetic diversity reductions occurred in several populations. Metapopulation structure appears to buffer against diversity loss; applying the indicators to metapopulations suggest mostly acceptable rates of change in all but one system. The CBD indicators agreed with the Swedish ones but provided less detail. All these indicators are appropriate for managers to initiate monitoring of genetic biodiversity.


Asunto(s)
Variación Genética , Genética de Población , Animales , Variación Genética/genética , Trucha/genética , Biodiversidad , Lagos
6.
Mol Ecol ; 31(2): 498-511, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699656

RESUMEN

The sympatric existence of genetically distinguishable populations of the same species remains a puzzle in ecology. Coexisting salmonid fish populations are known from over 100 freshwater lakes. Most studies of sympatric populations have used limited numbers of genetic markers making it unclear if genetic divergence involves certain parts of the genome. We returned to the first reported case of salmonid sympatry, initially detected through contrasting homozygosity at a single allozyme locus (coding for lactate dehydrogenase A) in brown trout in the small Lakes Bunnersjöarna, Sweden. First, we verified the existence of the two coexisting demes using a 96-SNP fluidigm array. We then applied whole-genome resequencing of pooled DNA to explore genome-wide diversity within and between these demes; nucleotide diversity was higher in deme I than in deme II. Strong genetic divergence is observed with genome-wide FST  ≈ 0.2. Compared with data from populations of similar small lakes, this divergence is of similar magnitude as that between reproductively isolated populations. Individual whole-genome resequencing of two individuals per deme suggests higher inbreeding in deme II versus deme I, indicating different degree of isolation. We located two gene-copies for LDH-A and found divergence between demes in a regulatory section of one of these genes. However, we did not find a perfect fit between the sequence data and previous allozyme results, and this will require further research. Our data demonstrates genome-wide divergence governed mostly by genetic drift but also by diversifying selection in coexisting populations. This type of hidden biodiversity needs consideration in conservation management.


Asunto(s)
Aislamiento Reproductivo , Simpatría , Animales , Variación Genética , Genética de Población , Humanos , Isoenzimas , Trucha/genética
7.
Proc Natl Acad Sci U S A ; 116(37): 18473-18478, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451650

RESUMEN

The evolutionary process that occurs when a species colonizes a new environment provides an opportunity to explore the mechanisms underlying genetic adaptation, which is essential knowledge for understanding evolution and the maintenance of biodiversity. Atlantic herring has an estimated total breeding stock of about 1 trillion (1012) and has colonized the brackish Baltic Sea within the last 10,000 y. Minute genetic differentiation between Atlantic and Baltic herring populations at selectively neutral loci combined with this rapid adaptation to a new environment facilitated the identification of hundreds of loci underlying ecological adaptation. A major question in the field of evolutionary biology is to what extent such an adaptive process involves selection of novel mutations with large effects or genetic changes at many loci, each with a small effect on phenotype (i.e., selection on standing genetic variation). Here we show that a missense mutation in rhodopsin (Phe261Tyr) is an adaptation to the red-shifted Baltic Sea light environment. The transition from phenylalanine to tyrosine differs only by the presence of a hydroxyl moiety in the latter, but this results in an up to 10-nm red-shifted light absorbance of the receptor. Remarkably, an examination of the rhodopsin sequences from 2,056 species of fish revealed that the same missense mutation has occurred independently and been selected for during at least 20 transitions between light environments across all fish. Our results provide a spectacular example of convergent evolution and how a single amino acid change can have a major effect on ecological adaptation.


Asunto(s)
Adaptación Biológica/genética , Evolución Molecular , Proteínas de Peces/genética , Peces/genética , Rodopsina/genética , Sustitución de Aminoácidos , Animales , Sitios Genéticos/genética , Fenilalanina/genética , Conformación Proteica en Hélice alfa/genética , Selección Genética , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Tirosina/genética , Visión Ocular/genética , Secuenciación Completa del Genoma
8.
Bioscience ; 71(9): 964-976, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34475806

RESUMEN

Global conservation policy and action have largely neglected protecting and monitoring genetic diversity-one of the three main pillars of biodiversity. Genetic diversity (diversity within species) underlies species' adaptation and survival, ecosystem resilience, and societal innovation. The low priority given to genetic diversity has largely been due to knowledge gaps in key areas, including the importance of genetic diversity and the trends in genetic diversity change; the perceived high expense and low availability and the scattered nature of genetic data; and complicated concepts and information that are inaccessible to policymakers. However, numerous recent advances in knowledge, technology, databases, practice, and capacity have now set the stage for better integration of genetic diversity in policy instruments and conservation efforts. We review these developments and explore how they can support improved consideration of genetic diversity in global conservation policy commitments and enable countries to monitor, report on, and take action to maintain or restore genetic diversity.

9.
BMC Genomics ; 21(1): 854, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33267779

RESUMEN

BACKGROUND: Numerous megafauna species from northern latitudes went extinct during the Pleistocene/Holocene transition as a result of climate-induced habitat changes. However, several ungulate species managed to successfully track their habitats during this period to eventually flourish and recolonise the holarctic regions. So far, the genomic impacts of these climate fluctuations on ungulates from high latitudes have been little explored. Here, we assemble a de-novo genome for the European moose (Alces alces) and analyse it together with re-sequenced nuclear genomes and ancient and modern mitogenomes from across the moose range in Eurasia and North America. RESULTS: We found that moose demographic history was greatly influenced by glacial cycles, with demographic responses to the Pleistocene/Holocene transition similar to other temperate ungulates. Our results further support that modern moose lineages trace their origin back to populations that inhabited distinct glacial refugia during the Last Glacial Maximum (LGM). Finally, we found that present day moose in Europe and North America show low to moderate inbreeding levels resulting from post-glacial bottlenecks and founder effects, but no evidence for recent inbreeding resulting from human-induced population declines. CONCLUSIONS: Taken together, our results highlight the dynamic recent evolutionary history of the moose and provide an important resource for further genomic studies.


Asunto(s)
Ciervos , Variación Genética , Animales , ADN Mitocondrial/genética , Ciervos/genética , Demografía , Europa (Continente) , América del Norte , Filogenia , Análisis de Secuencia de ADN
10.
Mol Ecol ; 28(8): 1904-1918, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30663828

RESUMEN

Estimation of effective population size (Ne ) from genetic marker data is a major focus for biodiversity conservation because it is essential to know at what rates inbreeding is increasing and additive genetic variation is lost. But are these the rates assessed when applying commonly used Ne estimation techniques? Here we use recently developed analytical tools and demonstrate that in the case of substructured populations the answer is no. This is because the following: Genetic change can be quantified in several ways reflecting different types of Ne such as inbreeding (NeI ), variance (NeV ), additive genetic variance (NeAV ), linkage disequilibrium equilibrium (NeLD ), eigenvalue (NeE ) and coalescence (NeCo ) effective size. They are all the same for an isolated population of constant size, but the realized values of these effective sizes can differ dramatically in populations under migration. Commonly applied Ne -estimators target NeV or NeLD of individual subpopulations. While such estimates are safe proxies for the rates of inbreeding and loss of additive genetic variation under isolation, we show that they are poor indicators of these rates in populations affected by migration. In fact, both the local and global inbreeding (NeI ) and additive genetic variance (NeAV ) effective sizes are consistently underestimated in a subdivided population. This is serious because these are the effective sizes that are relevant to the widely accepted 50/500 rule for short and long term genetic conservation.  The bias can be infinitely large and is due to inappropriate parameters being estimated when applying theory for isolated populations to subdivided ones.


Asunto(s)
Marcadores Genéticos/genética , Variación Genética/genética , Genética de Población , Densidad de Población , Animales , Flujo Génico , Endogamia , Desequilibrio de Ligamiento , Modelos Genéticos , Dinámica Poblacional/estadística & datos numéricos
11.
Mol Ecol ; 27(20): 4011-4025, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30137668

RESUMEN

Sympatric populations are conspecific populations that coexist spatially. They are of interest in evolutionary biology by representing the potential first steps of sympatric speciation and are important to identify and monitor in conservation management. Reviewing the literature pertaining to sympatric populations, we find that most cases of sympatry appear coupled to phenotypic divergence, implying ease of detection. In comparison, phenotypically cryptic, sympatric populations seem rarely documented. We explore the statistical power for detecting population mixtures from genetic marker data, using commonly applied tests for heterozygote deficiency (i.e., Wahlund effect) and the structure software, through computer simulations. We find that both tests are efficient at detecting population mixture only when genetic differentiation is high, sample size and number of genetic markers are reasonable and the sympatric populations happen to occur in similar proportions in the sample. We present an approximate expression based on these experimental factors for the lower limit of FST , beyond which power for structure collapses and only the heterozygote-deficiency tests retain some, although low, power. The findings suggest that cases of cryptic sympatry may have passed unnoticed in population genetic screenings using number of loci typical of the pre-genomics era. Hence, cryptic sympatric populations may be more common than hitherto thought, and we urge more attention being diverted to their detection and characterization.


Asunto(s)
Análisis de Secuencia de ADN/métodos , Simpatría/genética , Animales , Especiación Genética , Variación Genética/genética , Genética de Población
12.
Theor Popul Biol ; 112: 139-156, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27634366

RESUMEN

Many versions of the effective population size (Ne) exist, and they are important in population genetics in order to quantify rates of change of various characteristics, such as inbreeding, heterozygosity, or allele frequencies. Traditionally, Ne was defined for single, isolated populations, but we have recently presented a mathematical framework for subdivided populations. In this paper we focus on diploid populations with geographic subdivision, and present new theoretical results. We compare the haploid and diploid versions of the inbreeding effective size (NeI) with novel expression for the variance effective size (NeV), and conclude that for local populations NeV is often much smaller than both versions of NeI, whenever they exist. Global NeV of the metapopulation, on the other hand, is close to the haploid NeI and much larger than the diploid NeI. We introduce a new effective size, the additive genetic variance effective size NeAV, which is of particular interest for long term protection of species. It quantifies the rate at which additive genetic variance is lost and we show that this effective size is closely related to the haploid version of NeI. Finally, we introduce a new measure of a population's deviation from migration-drift equilibrium, and apply it to quantify the time it takes to reach this equilibrium. Our findings are of importance for understanding the concept of effective population size in substructured populations and many of the results have applications in conservation biology.


Asunto(s)
Genética de Población , Modelos Genéticos , Densidad de Población , Consanguinidad , Variación Genética
13.
Theor Popul Biol ; 102: 40-59, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25875853

RESUMEN

Motivated by problems in conservation biology we study genetic dynamics in structured populations of diploid organisms (monoecious or dioecious). Our analysis provides an analytical framework that unifies substantial parts of previous work in terms of exact identity by descent (IBD) and identity by state (IBS) recursions. We provide exact conditions under which two structured haploid and diploid populations are equivalent, and some sufficient conditions under which a dioecious diploid population can be treated as a monoecious diploid one. The IBD recursions are used for computing local and metapopulation inbreeding and coancestry effective population sizes and for predictions of several types of fixation indices over different time horizons.


Asunto(s)
Evolución Biológica , Diploidia , Genética de Población , Endogamia , Animales , Femenino , Masculino , Modelos Genéticos , Densidad de Población , Dinámica Poblacional
14.
Proc Natl Acad Sci U S A ; 109(47): 19345-50, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23134729

RESUMEN

The Atlantic herring (Clupea harengus), one of the most abundant marine fishes in the world, has historically been a critical food source in Northern Europe. It is one of the few marine species that can reproduce throughout the brackish salinity gradient of the Baltic Sea. Previous studies based on few genetic markers have revealed a conspicuous lack of genetic differentiation between geographic regions, consistent with huge population sizes and minute genetic drift. Here, we present a cost-effective genome-wide study in a species that lacks a genome sequence. We first assembled a muscle transcriptome and then aligned genomic reads to the transcripts, creating an "exome assembly," capturing both exons and flanking sequences. We then resequenced pools of fish from a wide geographic range, including the Northeast Atlantic, as well as different regions in the Baltic Sea, aligned the reads to the exome assembly, and identified 440,817 SNPs. The great majority of SNPs showed no appreciable differences in allele frequency among populations; however, several thousand SNPs showed striking differences, some approaching fixation for different alleles. The contrast between low genetic differentiation at most loci and striking differences at others implies that the latter category primarily reflects natural selection. A simulation study confirmed that the distribution of the fixation index F(ST) deviated significantly from expectation for selectively neutral loci. This study provides insights concerning the population structure of an important marine fish and establishes the Atlantic herring as a model for population genetic studies of adaptation and natural selection.


Asunto(s)
Adaptación Fisiológica/genética , Peces/genética , Análisis de Secuencia de ADN , Animales , Océano Atlántico , Simulación por Computador , Exoma/genética , Frecuencia de los Genes/genética , Sitios Genéticos/genética , Genética de Población , Genoma/genética , Técnicas de Genotipaje , Geografía , Polimorfismo de Nucleótido Simple/genética , Manejo de Especímenes , Transcriptoma/genética
16.
Nat Ecol Evol ; 8(2): 267-281, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225425

RESUMEN

Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species' joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union's Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Conservación de los Recursos Naturales/métodos , Europa (Continente) , Ecosistema , Variación Genética
17.
Theor Popul Biol ; 90: 91-103, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24120695

RESUMEN

The variance effective population size (NeV) is a key concept in population biology, because it quantifies the microevolutionary process of random genetic drift, and understanding the characteristics of NeV is thus of central importance. Current formulas for NeV for populations with overlapping generations weight age classes according to their reproductive values (i.e. reflecting the contribution of genes from separate age classes to the population growth) to obtain a correct measure of genetic drift when computing the variance of the allele frequency change over time. In this paper, we examine the effect of applying different weights to the age classes using a novel analytical approach for exploring NeV. We consider a haploid organism with overlapping generations and populations of increasing, declining, or constant expected size and stochastic variation with respect to the number of individuals in the separate age classes. We define NeV, as a function of how the age classes are weighted, and of the span between the two points in time, when measuring allele frequency change. With this model, time profiles for NeV can be calculated for populations with various life histories and with fluctuations in life history composition, using different weighting schemes. We examine analytically and by simulations when NeV, using a weighting scheme with respect to reproductive contribution of separate age classes, accurately reflect the variance of the allele frequency change due to genetic drift over time. We show that the discrepancy of NeV, calculated with reproductive values as weights, compared to when individuals are weighted equally, tends to a constant when the time span between the two measurements increases. This constant is zero only for a population with a constant expected population size. Our results confirm that the effect of ignoring overlapping generations, when empirically assessing NeV from allele frequency shifts, gets smaller as the time interval between samples increases. Our model has empirical applications including assessment of (i) time intervals necessary to permit ignoring the effect of overlapping generations for NeV estimation by means of the temporal method, and (ii) effects of life table manipulation on NeV over varying time periods.


Asunto(s)
Modelos Genéticos , Densidad de Población , Flujo Genético , Procesos Estocásticos
18.
Conserv Biol ; 27(2): 248-53, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23282216

RESUMEN

The wolf (Canis lupus) is classified as endangered in Sweden by the Swedish Species Information Centre, which is the official authority for threat classification. The present population, which was founded in the early 1980s, descends from 5 individuals. It is isolated and highly inbred, and on average individuals are more related than siblings. Hunts have been used by Swedish authorities during 2010 and 2011 to reduce the population size to its upper tolerable level of 210 wolves. European Union (EU) biodiversity legislation requires all member states to promote a concept called "favourable conservation status" (FCS) for a series of species including the wolf. Swedish national policy stipulates maintenance of viable populations with sufficient levels of genetic variation of all naturally occurring species. Hunting to reduce wolf numbers in Sweden is currently not in line with national and EU policy agreements and will make genetically based FCS criteria less achievable for this species. We suggest that to reach FCS for the wolf in Sweden the following criteria need to be met: (1) a well-connected, large, subdivided wolf population over Scandinavia, Finland, and the Russian Karelia-Kola region should be reestablished, (2) genetically effective size (Ne ) of this population is in the minimum range of Ne = 500-1000, (3) Sweden harbors a part of this total population that substantially contributes to the total Ne and that is large enough to not be classified as threatened genetically or according to IUCN criteria, and (4) average inbreeding levels in the Swedish population are <0.1.


Asunto(s)
Conservación de los Recursos Naturales , Endogamia , Densidad de Población , Lobos/fisiología , Animales , Política Ambiental/legislación & jurisprudencia , Variación Genética , Suecia , Lobos/genética
19.
Mol Ecol Resour ; 23(6): 1334-1347, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37122118

RESUMEN

Measurement of allele frequency shifts between temporally spaced samples has long been used for assessment of effective population size (Ne ), and this 'temporal method' provides estimates of Ne referred to as variance effective size (NeV ). We show that NeV of a local population that belongs to a sub-structured population (a metapopulation) is determined not only by genetic drift and migration rate (m), but also by the census size (Nc ). The realized NeV of a local population can either increase or decrease with increasing m, depending on the relationship between Ne and Nc in isolation. This is shown by explicit mathematical expressions for the factors affecting NeV derived for an island model of migration. We verify analytical results using high-resolution computer simulations, and show that the phenomenon is not restricted to the island model migration pattern. The effect of Nc on the realized NeV of a local subpopulation is most pronounced at high migration rates. We show that Nc only affects local NeV , whereas NeV for the metapopulation as a whole, inbreeding (NeI ), and linkage disequilibrium (NeLD ) effective size are all independent of Nc . Our results provide a possible explanation to the large variation of Ne /Nc ratios reported in the literature, where Ne is frequently estimated by NeV . They are also important for the interpretation of empirical Ne estimates in genetic management where local NeV is often used as a substitute for inbreeding effective size, and we suggest an increased focus on metapopulation NeV as a proxy for NeI .


Asunto(s)
Censos , Endogamia , Densidad de Población , Flujo Genético , Frecuencia de los Genes , Genética de Población , Variación Genética
20.
Commun Biol ; 6(1): 1035, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848497

RESUMEN

Ungulate species have experienced severe declines over the past centuries through overharvesting and habitat loss. Even if many game species have recovered thanks to strict hunting regulation, the genome-wide impacts of overharvesting are still unclear. Here, we examine the temporal and geographical differences in genome-wide diversity in moose (Alces alces) over its whole range in Sweden by sequencing 87 modern and historical genomes. We found limited impact of the 1900s near-extinction event but local variation in inbreeding and load in modern populations, as well as suggestion of a risk of future reduction in genetic diversity and gene flow. Furthermore, we found candidate genes for local adaptation, and rapid temporal allele frequency shifts involving coding genes since the 1980s, possibly due to selective harvesting. Our results highlight that genomic changes potentially impacting fitness can occur over short time scales and underline the need to track both deleterious and selectively advantageous genomic variation.


Asunto(s)
Ciervos , Genoma , Animales , Suecia , Genómica , Ciervos/genética , Endogamia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA