Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 322: 116037, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36049305

RESUMEN

According to the available guidelines, good practices for calculating nitrous oxide (N2O) emission factors (EFs) for livestock excreta and manure application include that sampling duration should be of at least one year after the nitrogen (N) application or deposition. However, the available experimental data suggest that in many cases most emissions are concentrated in the first months following N application. Therefore resources could be better deployed by measuring more intensively during a shorter period. This study aimed to assess the contribution of the N2O flux in the period directly after N application to the annual net emission. We used a database of 100 year-long plot experiments from different excreted-N sources (dung, urine, farmyard manure and slurry) used to derive EFs for the UK and Ireland. We explored different shorter potential measurement periods that could be used as proxies for cumulative annual emissions. The analysis showed that the majority of emissions occur in the first months after application, especially in experiments that i) had urine as the N source, ii) had spring N application, iii) were conducted on fine-textured soils, or iv) showed high annual emissions magnitude. Experiments that showed a smaller percentage of emissions in the first months also had a low magnitude of annual net emissions (below 370 gN2O-N ha-1 year-1), so the impact of measuring during a shorter period would not greatly influence the calculated EF. Accurate EF estimations were obtained by measuring for at least 60 days for urine (underestimation: 7.1%), 120 days for dung and slurry (4.7 and 5.1%) and 180 days for FYM (1.4%). At least in temperate climates, these results are promising in terms of being able to estimate annual N2O fluxes accurately by collecting data for less than 12 months, with significant resource-saving when conducting experiments towards developing country-specific EFs.


Asunto(s)
Estiércol , Óxido Nitroso , Agricultura/métodos , Animales , Bovinos , Fertilizantes , Irlanda , Nitrógeno , Óxido Nitroso/análisis , Suelo , Reino Unido
2.
Rapid Commun Mass Spectrom ; 35(8): e9049, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33461241

RESUMEN

RATIONALE: N2 O isotopomers are a useful tool to study soil N cycling processes. The reliability of such measurements requires a consistent set of international N2 O isotope reference materials to improve inter-laboratory and inter-instrument comparability and avoid reporting inaccurate results. All these are the more important given the role of N2 O in anthropogenic climate change and the pressing need to develop our understanding of soil N cycling and N2 O emission to mitigate such emissions. Cavity ring-down spectroscopy (CRDS) could potentially overcome resource requirements and technical challenges, making N2 O isotopomer measurements more feasible and less expensive than previous approaches (e.g., gas chromatography [GC] and isotope ratio mass spectrometry [IRMS]). METHODS: A combined laser spectrometer and small sample isotope module (CRDS & SSIM) method enabled N2 O concentration, δ15 Nbulk , δ15 Nα , δ15 Nß and site preference (SP) measurements of sample volumes <20 mL, such as static chamber samples. Sample dilution and isotopic mixing as well as N2 O concentration dependence were corrected numerically. A two-point calibration procedure normalised δ values to the international isotope-ratio scales. The CRDS & SSIM repeatability was determined using a reference gas (Ref Gas). CRDS & SSIM concentration measurements were compared with those obtained by GC, and the isotope ratio measurements from two different mass spectrometers were compared. RESULTS: The repeatability (mean ± 1σ; n = 10) of the CRDS & SSIM measurements of the Ref Gas was 710.64 ppb (± 8.64), 2.82‰ (± 0.91), 5.41‰ (± 2.00), 0.23‰ (± 0.22) and 5.18‰ (± 2.18) for N2 O concentration, δ15 Nbulk , δ15 Nα , δ15 Nß and SP, respectively. The CRDS & SSIM concentration measurements were strongly correlated with GC (r = 0.99), and they were more precise than those obtained using GC except when the N2 O concentrations exceeded the specified operating range. Normalising CRDS & SSIM δ values to the international isotope-ratio scales using isotopic N2 O standards (AK1 and Mix1) produced accurate results when the samples were bracketed within the range of the δ values of the standards. The CRDS & SSIM δ15 Nbulk and SP precision was approximately one order of magnitude less than the typical IRMS precision. CONCLUSIONS: CRDS & SSIM is a promising approach that enables N2 O concentrations and isotope ratios to be measured by CRDS for samples <20 mL. The CRDS & SSIM repeatability makes this approach suitable for N2 O "isotopomer mapping" to distinguish dominant source pathways, such as nitrification and denitrification, and requires less extensive lab resources than the traditionally used GC/IRMS. Current study limitations highlighted potential improvements for future users of this approach to consider, such as automation and physical removal of interfering trace gases before sample analysis.

3.
Mol Ecol ; 26(20): 5500-5514, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28752622

RESUMEN

The nitrogen (N) cycle represents one of the most well-studied systems, yet the taxonomic diversity of the organisms that contribute to it is mostly unknown, or linked to poorly characterized microbial groups. While new information has allowed functional groups to be refined, they still rely on a priori knowledge of enzymes involved and the assumption of functional conservation, with little connection to the role the transformations, plays for specific organisms. Here, we use soil microcosms to test the impact of N deposition on prokaryotic communities. By combining chemical, genomic and transcriptomic analysis, we are able to identify and link changes in community structure to specific organisms catalysing given chemical reactions. Urea deposition led to a decrease in prokaryotic richness, and a shift in community composition. This was driven by replacement of stable native populations, which utilize energy from N-linked redox reactions for physiological maintenance, with fast responding populations that use this energy for growth. This model can be used to predict response to N disturbances and allows us to identify putative life strategies of different functional and taxonomic groups, thus providing insights into how they persist in ecosystems by niche differentiation.


Asunto(s)
Bacterias/metabolismo , Ciclo del Nitrógeno , Nitrógeno/química , Microbiología del Suelo , Suelo/química , Bacterias/clasificación , Ecosistema , Fertilizantes , Concentración de Iones de Hidrógeno , Irlanda , Modelos Biológicos , Operón , Oxidación-Reducción , ARN Ribosómico 16S/aislamiento & purificación , Urea/química
4.
J Environ Qual ; 45(3): 788-95, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27136143

RESUMEN

Denitrifying bioreactors convert nitrate-nitrogen (NO-N) to di-nitrogen and protect water quality. Herein, the performance of a pilot-scale bioreactor (10 m long, 5 m wide, 2 m deep) containing seven alternating cells filled with either sandy loam soil or lodgepole pine woodchip and with a novel "zig-zag" flow pattern was investigated. The influent water had an average NO-N concentration of 25 mg L. The performance of the bioreactor was evaluated in two scenarios. In Scenario 1, only NO-N removal was evaluated; in Scenario 2, NO-N removal, ammonium-N (NH-N), and dissolved reactive phosphorus (DRP) generation was considered. These data were used to generate a sustainability index (SI), which evaluated the overall performance taking these parameters into account. In Scenario 1, the bioreactor was a net reducer of contaminants, but it transformed into a net producer of contaminants in Scenario 2. Inquisition of the data using these scenarios meant that an optimum bioreactor design could be identified. This would involve reduction to two cells: a single sandy loam soil cell followed by a woodchip cell, which would remove NO-N and reduce greenhouse gas (GHG) emissions and DRP losses. An additional post-bed chamber containing media to eliminate NH-N and surface capping to reduce GHG emissions further is advised. Scenario modeling, such as that proposed in this paper, should ideally include GHG in the SI, but because different countries have different emission targets, future work should concentrate on the development of geographically appropriate weightings to facilitate the incorporation of GHG into a SI.


Asunto(s)
Reactores Biológicos , Nitrógeno/análisis , Nitratos , Fósforo , Suelo
5.
Glob Chang Biol ; 20(10): 3137-46, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24706411

RESUMEN

Nitrous oxide (N2 O) emissions are subject to intra- and interannual variation due to changes in weather and management. This creates significant uncertainties when quantifying estimates of annual N2 O emissions from grazed grasslands. Despite these uncertainties, the majority of studies are short-term in nature (<1 year) and as a consequence, there is a lack of data on interannual variation in N2 O emissions. The objectives of this study were to (i) quantify annual N2 O emissions and (ii) assess the causes of interannual variation in emissions from grazed perennial ryegrass/white clover grassland. Nitrous oxide emissions were measured from fertilized and grazed perennial ryegrass/white clover grassland (WC) and from perennial ryegrass plots that were not grazed and did not receive N input (GB), over 4 years from 2008 to 2012 in Ireland (52°51'N, 08°21'W). The annual N2 O-N emissions (kg ha(-1); mean ± SE) ranged from 4.4 ± 0.2 to 34.4 ± 5.5 from WC and from 1.7 ± 0.8 to 6.3 ± 1.2 from GB. Interannual variation in N2 O emissions was attributed to differences in annual rainfall, monthly (December) soil temperatures and variation in N input. Such substantial interannual variation in N2 O emissions highlights the need for long-term studies of emissions from managed pastoral systems.


Asunto(s)
Contaminantes Atmosféricos/análisis , Pradera , Lolium/metabolismo , Óxido Nitroso/análisis , Trifolium/metabolismo , Clima , Industria Lechera , Fertilizantes , Irlanda
6.
J Environ Manage ; 128: 690-8, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23850764

RESUMEN

The effectiveness of chemical amendment of pig slurry to ameliorate phosphorus (P) losses in runoff is well studied, but research mainly has concentrated only on the runoff pathway. The aims of this study were to investigate changes to leachate nutrient losses, soil properties and greenhouse gas (GHG) emissions due to the chemical amendment of pig slurry spread at 19 kg total phosphorus (TP), 90 kg total nitrogen (TN), and 180 kg total carbon (TC) ha(-1). The amendments examined were: (1) commercial grade liquid alum (8% Al2O3) applied at a rate of 0.88:1 [Al:TP], (2) commercial-grade liquid ferric chloride (38% FeCl3) applied at a rate of 0.89:1 [Fe:TP] and (3) commercial-grade liquid poly-aluminium chloride (PAC) (10% Al2O3) applied at a rate of 0.72:1 [Al:TP]. Columns filled with sieved soil were incubated for 8 mo at 10 °C and were leached with 160 mL (19 mm) distilled water wk(-1). All amendments reduced the Morgan's phosphorus and water extractable P content of the soil to that of the soil-only treatment, indicating that they have the ability to reduce P loss in leachate following slurry application. There were no significant differences between treatments for nitrogen (N) or carbon (C) in leachate or soil, indicating no deleterious impact on reactive N emissions or soil C cycling. Chemical amendment posed no significant change to GHG emissions from pig slurry, and in the cases of alum and PAC, reduced cumulative N2O and CO2 losses. Chemical amendment of land applied pig slurry can reduce P in runoff without any negative impact on nutrient leaching and GHG emissions. Future work must be conducted to ascertain if more significant reductions in GHG emissions are possible with chemical amendments.


Asunto(s)
Estiércol , Fósforo/química , Suelo/química , Contaminación del Agua/prevención & control , Compuestos de Alumbre/química , Animales , Carbono/análisis , Cloruros/química , Ambiente , Compuestos Férricos/química , Gases , Efecto Invernadero , Concentración de Iones de Hidrógeno , Irlanda , Nitrógeno/análisis , Óxido Nitroso/análisis , Fósforo/análisis , Porcinos
7.
Sci Total Environ ; 779: 146318, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34030223

RESUMEN

Nitrous oxide (N2O) is a strong greenhouse gas produced by biotic/abiotic processes directly linked to both fungal and prokaryotic communities that produce, consume or create conditions leading to its emission. In soils exposed to nitrogen (N) in the form of urea, an ecological succession is triggered resulting in a dynamic turnover of microbial populations. However, knowledge of the mechanisms controlling this succession and the repercussions for N2O emissions remain incomplete. Here, we monitored N2O production and fungal/prokaryotic community changes (via 16S and 18S amplicon sequencing) in soil microcosms exposed to urea. Contributions of microbes to emissions were determined using biological inhibitors. Results confirmed that urea leads to shifts in microbial community assemblages by selecting for certain microbial groups (fast growers) as dictated through life history strategies. Urea reduced overall community diversity by conferring dominance to specific groups at different stages in the succession. The diversity lost under urea was recovered with inhibitor addition through the removal of groups that were actively growing under urea indicating that species replacement is mediated in part by competition. Results also identified fungi as significant contributors to N2O emissions, and demonstrate that dominant fungal populations are consistently replaced at different stages of the succession. These successions were affected by addition of inhibitors which resulted in strong decreases in N2O emissions, suggesting that fungal contributions to N2O emissions are larger than that of prokaryotes.


Asunto(s)
Gases de Efecto Invernadero , Desnitrificación , Nitrógeno/análisis , Óxido Nitroso/análisis , Suelo , Microbiología del Suelo
8.
Sci Total Environ ; 792: 148163, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34147803

RESUMEN

In a field experiment, annual nitrous oxide (N2O) emissions and grassland yield were measured across different plant communities, comprising systematically varying combinations of monocultures and mixtures of three functional groups (FG): grasses (Lolium perenne, Phleum pratense), legumes (Trifolium pratense, Trifolium repens) and herbs (Cichorium intybus, Plantago lanceolata). Plots received 150 kg ha-1 year-1 nitrogen (N) (150 N), except L. perenne monocultures which received two N levels: 150 N and 300 N. The effect of plant diversity on N2O emissions was derived from linear combinations of species performances' in monoculture (species identity) and not from strong interactions between species in mixtures. Increasing from 150 N to 300 N in L. perenne resulted in a highly significant increase in cumulative N2O emissions from 1.39 to 3.18 kg N2O-N ha-1 year-1. Higher N2O emissions were also associated with the legume FG. Emissions intensities (yield-scaled N2O emissions) from multi-species mixture communities around the equi-proportional mixture were lowered due to interactions among species. For N2O emissions scaled by nitrogen yield in forage, the 6-species mixture was significantly lower than L. perenne at both 300 N and 150 N. In comparison to 300 N L. perenne, the same N yield or DM yield could have been produced with the equi-proportional 6-species mixture (150 N) while reducing N2O losses by 63% and 58% respectively. Compared to 150 N L. perenne, the same N yield or DM yield could have been produced with the 6-species mixture while reducing N2O losses by 41% and 24% respectively. Overall, this study found that multi-species grasslands can potentially reduce both N2O emissions and emissions intensities, contributing to the sustainability of grassland production.


Asunto(s)
Pradera , Suelo , Fertilizantes/análisis , Nitrógeno , Óxido Nitroso/análisis , Poaceae
9.
Sci Total Environ ; 781: 146515, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33812119

RESUMEN

Nitrous oxide (N2O) is a potent greenhouse gas (GHG) emitted from agricultural soils and is influenced by nitrogen (N) fertiliser management and weather and soil conditions. Source partitioning N2O emissions related to management practices and soil conditions could suggest effective mitigation strategies. Multispecies swards can maintain herbage yields at reduced N fertiliser rates compared to grass monocultures and may reduce N losses to the wider environment. A restricted-simplex centroid experiment was used to measure daily N2O fluxes and associated isotopomers from eight experimental plots (7.8 m2) post a urea-N fertiliser application (40 kg N ha-1). Experimental pastures consisted of differing proportions of grass, legume and forage herb represented by perennial ryegrass (Lolium perenne), white clover (Trifolium repens) and ribwort plantain (Plantago lanceolata), respectively. N2O isotopomers were measured using a cavity ring down spectroscopy (CRDS) instrument adapted with a small sample isotope module (SSIM) for the analysis of gas samples ≤20 mL. Site preference (SP = δ15Nα - δ15Nß) and δ15Nbulk ((δ15Nα + δ15Nß) / 2) values were used to attribute N2O production to nitrification, denitrification or a mixture of both nitrification and denitrification over a range of soil WFPS (%). Daily N2O fluxes ranged from 8.26 to 86.86 g N2O-N ha-1 d-1. Overall, 34.2% of daily N2O fluxes were attributed to nitrification, 29.0% to denitrification and 36.8% to a mixture of both. A significant diversity effect of white clover and ribwort plantain on predicted SP and δ15Nbulk indicated that the inclusion of ribwort plantain may decrease N2O emission through biological nitrification inhibition under drier soil conditions (31%-75% WFPS). Likewise, a sharp decline in predicted SP indicates that increased white clover content could increase N2O emissions associated with denitrification under elevated soil moisture conditions (43%-77% WFPS). Biological nitrification inhibition from ribwort plantain inclusion in grassland swards and management of N fertiliser source and application timing to match soil moisture conditions could be useful N2O mitigation strategies.

10.
Sci Total Environ ; 722: 137780, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32208244

RESUMEN

Increased emissions of N2O, a potent greenhouse gas (GHG), from agricultural soils is a major concern for the sustainability of grassland agriculture. Emissions of N2O are closely associated with the rates and forms of N fertilisers applied as well as prevailing weather and soil conditions. Evidence suggests that multispecies swards require less fertiliser N input, and may cycle N differently, thus reducing N loss to the environment. This study used a restricted simplex-centroid experimental design to investigate N2O emissions and soil N cycling following application of urea-N (40 kg N ha-1) to eight experimental swards (7.8 m2) with differing proportions of three plant functional groups (grass, legume, herb) represented by perennial ryegrass (PRG, Lolium perenne), white clover (WC, Trifolium repens) and ribwort plantain (PLAN, Plantago lanceolata), respectively. Swards were maintained under two contrasting soil moisture conditions to examine the balance between nitrification and denitrification. Two N2O peaks coincided with fertiliser application and heavy rainfall events; 13.4 and 17.7 g N2O-N ha-1 day-1 (ambient soil moisture) and 39.8 and 86.9 g N2O-N ha-1 day-1 (wet soil moisture). Overall, cumulative N2O emissions post-fertiliser application were higher under wet soil conditions. Increasing legume (WC) proportions from 0% to 60% in multispecies swards resulted in model predicted N2O emissions increasing from 22.3 to 96.2 g N2O-N ha-1 (ambient soil conditions) and from 59.0 to 219.3 g N2O-N ha-1 (wet soil conditions), after a uniform N application rate. Soil N dynamics support denitrification as the dominant source of N2O especially under wet soil conditions. Significant interactions of PRG or WC with PLAN on soil mineral N concentrations indicated that multispecies swards containing PLAN potentially inhibit nitrification and could be a useful mitigation strategy for N loss to the environment from grassland agriculture.

11.
Sci Rep ; 9(1): 13371, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527802

RESUMEN

Ruminant urine patches on grazed grassland are a significant source of agricultural nitrous oxide (N2O) emissions. Of the many biotic and abiotic N2O production mechanisms initiated following urine-urea deposition, codenitrification resulting in the formation of hybrid N2O, is one of the least understood. Codenitrification forms hybrid N2O via biotic N-nitrosation, co-metabolising organic and inorganic N compounds (N substrates) to produce N2O. The objective of this study was to assess the relative significance of different N substrates on codenitrification and to determine the contributions of fungi and bacteria to codenitrification. 15N-labelled ammonium, hydroxylamine (NH2OH) and two amino acids (phenylalanine or glycine) were applied, separately, to sieved soil mesocosms eight days after a simulated urine event, in the absence or presence of bacterial and fungal inhibitors. Soil chemical variables and N2O fluxes were monitored and the codenitrified N2O fluxes determined. Fungal inhibition decreased N2O fluxes by ca. 40% for both amino acid treatments, while bacterial inhibition only decreased the N2O flux of the glycine treatment, by 14%. Hydroxylamine (NH2OH) generated the highest N2O fluxes which declined with either fungal or bacterial inhibition alone, while combined inhibition resulted in a 60% decrease in the N2O flux. All the N substrates examined participated to some extent in codenitrification. Trends for codenitrification under the NH2OH substrate treatment followed those of total N2O fluxes (85.7% of total N2O flux). Codenitrification fluxes under non-NH2OH substrate treatments (0.7-1.2% of total N2O flux) were two orders of magnitude lower, and significant decreases in these treatments only occurred with fungal inhibition in the amino acid substrate treatments. These results demonstrate that in situ studies are required to better understand the dynamics of codenitrification substrates in grazed pasture soils and the associated role that fungi have with respect to codenitrification.


Asunto(s)
Desnitrificación/fisiología , Nitrógeno/metabolismo , Microbiología del Suelo , Agricultura , Bacterias/metabolismo , Hongos/metabolismo , Pradera , Compuestos de Nitrógeno/metabolismo , Óxido Nitroso/metabolismo , Suelo/química
12.
Sci Rep ; 8(1): 4363, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29515219

RESUMEN

A correction has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

13.
Sci Rep ; 7: 45635, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28382933

RESUMEN

Soil plays a key role in the global carbon (C) cycle. Most current assessments of SOC stocks and the guidelines given by Intergovernmental Panel on Climate Change (IPCC) focus on the top 30 cm of soil. Our research shows that, when considering only total quantities, most of the SOC stocks are found in this top layer. However, not all forms of SOC are equally valuable as long-term stable stores of carbon: the majority of SOC is available for mineralisation and can potentially be re-emitted to the atmosphere. SOC associated with micro-aggregates and silt plus clay fractions is more stable and therefore represents a long-term carbon store. Our research shows that most of this stable carbon is located at depths below 30 cm (42% of subsoil SOC is located in microaggregates and silt and clay, compared to 16% in the topsoil), specifically in soils that are subject to clay illuviation. This has implications for land management decisions in temperate grassland regions, defining the trade-offs between primary productivity and C emissions in clay-illuviated soils, as a result of drainage. Therefore, climate smart land management should consider the balance between SOC stabilisation in topsoils for productivity versus sequestration in subsoils for climate mitigation.

14.
Sci Rep ; 7(1): 2185, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28526821

RESUMEN

Intensively managed agricultural pastures contribute to N2O and N2 fluxes resulting in detrimental environmental outcomes and poor N use efficiency, respectively. Besides nitrification, nitrifier-denitrification and heterotrophic denitrification, alternative pathways such as codenitrification also contribute to emissions under ruminant urine-affected soil. However, information on codenitrification is sparse. The objectives of this experiment were to assess the effects of soil moisture and soil inorganic-N dynamics on the relative contributions of codenitrification and denitrification (heterotrophic denitrification) to the N2O and N2 fluxes under a simulated ruminant urine event. Repacked soil cores were treated with 15N enriched urea and maintained at near saturation (-1 kPa) or field capacity (-10 kPa). Soil inorganic-N, pH, dissolved organic carbon, N2O and N2 fluxes were measured over 63 days. Fluxes of N2, attributable to codenitrification, were at a maximum when soil nitrite (NO2-) concentrations were elevated. Cumulative codenitrification was higher (P = 0.043) at -1 kPa. However, the ratio of codenitrification to denitrification did not differ significantly with soil moisture, 25.5 ± 15.8 and 12.9 ± 4.8% (stdev) at -1 and -10 kPa, respectively. Elevated soil NO2- concentrations are shown to contribute to codenitrification, particularly at -1 kPa.

15.
Ecol Evol ; 6(21): 7856-7868, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30128135

RESUMEN

An increase in mean soil surface temperature has been observed over the last century, and it is predicted to further increase in the future. The effect of increased temperature on ecosystem carbon fluxes in a permanent temperate grassland was studied in a long-term (6 years) field experiment, using multiple temperature increments induced by IR lamps. Ecosystem respiration (R-eco) and net ecosystem exchange (NEE) were measured and modeled by a modified Lloyd and Taylor model including a soil moisture component for R-eco (average R2 of 0.78) and inclusion of a photosynthetic component based on temperature and radiation for NEE (R2 = 0.65). Modeled NEE values ranged between 2.3 and 5.3 kg CO 2 m-2 year-1, depending on treatment. An increase of 2 or 3°C led to increased carbon losses, lowering the carbon storage potential by around 4 tonnes of C ha-1 year-1. The majority of significant NEE differences were found during night-time compared to daytime. This suggests that during daytime the increased respiration could be offset by an increase in photosynthetic uptake. This was also supported by differences in δ13C and δ18O, indicating prolonged increased photosynthetic activity associated with the higher temperature treatments. However, this increase in photosynthesis was insufficient to counteract the 24 h increase in respiration, explaining the higher CO 2 emissions due to elevated temperature.

16.
PLoS One ; 11(3): e0151713, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26990862

RESUMEN

Denitrification in pasture soils is mediated by microbial and physicochemical processes leading to nitrogen loss through the emission of N2O and N2. It is known that N2O reduction to N2 is impaired by low soil pH yet controversy remains as inconsistent use of soil pH measurement methods by researchers, and differences in analytical methods between studies, undermine direct comparison of results. In addition, the link between denitrification and N2O emissions in response to carbon (C) mineralization and pH in different pasture soils is still not well described. We hypothesized that potential denitrification rate and aerobic respiration rate would be positively associated with soils. This relationship was predicted to be more robust when a high resolution analysis is performed as opposed to a single time point comparison. We tested this by characterizing 13 different temperate pasture soils from northern and southern hemispheres sites (Ireland and New Zealand) using a fully automated-high-resolution GC detection system that allowed us to detect a wide range of gas emissions simultaneously. We also compared the impact of using different extractants for determining pH on our conclusions. In all pH measurements, soil pH was strongly and negatively associated with both N2O production index (IN2O) and N2O/(N2O+N2) product ratio. Furthermore, emission kinetics across all soils revealed that the denitrification rates under anoxic conditions (NO+N2O+N2 µmol N/h/vial) were significantly associated with C mineralization (CO2 µmol/h/vial) measured both under oxic (r2 = 0.62, p = 0.0015) and anoxic (r2 = 0.89, p<0.0001) conditions.


Asunto(s)
Carbono/metabolismo , Desnitrificación/fisiología , Nitrógeno/metabolismo , Óxido Nitroso/metabolismo , Suelo/química , Anaerobiosis/fisiología , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Microbiología del Suelo
17.
Sci Rep ; 6: 35990, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27782174

RESUMEN

Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N2O and N2 emissions. Soil pH regulates the reduction of N2O to N2, however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N2O emission ratio (N2O/(NO + N2O + N2)) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N2O emission ratio and community changes. Soil pH was negatively associated with N2O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir &nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N2O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N2O emission ratio through more efficient conversion of N2O to N2.


Asunto(s)
Microbiología del Suelo , Suelo/química , Agricultura , Biodiversidad , Desnitrificación/genética , Genes Microbianos , Gases de Efecto Invernadero/análisis , Concentración de Iones de Hidrógeno , Metagenoma , Consorcios Microbianos/genética , Nitrógeno/análisis , Óxido Nitroso/análisis , Filogenia , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética
18.
PLoS One ; 10(6): e0111965, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26053923

RESUMEN

Land application of cattle slurry can result in incidental and chronic phosphorus (P) loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-called 'pollution swapping' potential) and therefore the feasibility of using such amendments has not been examined to date. The aim of this laboratory scale study was to determine how the chemical amendment of slurry affects losses of NH3, CH4, N2O, and CO2. Alum, FeCl2, Polyaluminium chloride (PAC)- and biochar reduced NH3 emissions by 92, 54, 65 and 77% compared to the slurry control, while lime increased emissions by 114%. Cumulative N2O emissions of cattle slurry increased when amended with alum and FeCl2 by 202% and 154% compared to the slurry only treatment. Lime, PAC and biochar resulted in a reduction of 44, 29 and 63% in cumulative N2O loss compared to the slurry only treatment. Addition of amendments to slurry did not significantly affect soil CO2 release during the study while CH4 emissions followed a similar trend for all of the amended slurries applied, with an initial increase in losses followed by a rapid decrease for the duration of the study. All of the amendments examined reduced the initial peak in CH4 emissions compared to the slurry only treatment. There was no significant effect of slurry amendments on global warming potential (GWP) caused by slurry land application, with the exception of biochar. After considering pollution swapping in conjunction with amendment effectiveness, the amendments recommended for further field study are PAC, alum and lime. This study has also shown that biochar has potential to reduce GHG losses arising from slurry application.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Amoníaco/análisis , Industria Lechera , Fósforo/análisis , Aguas del Alcantarillado/química , Animales , Dióxido de Carbono/análisis , Bovinos , Estudios de Factibilidad , Calentamiento Global , Efecto Invernadero , Metano/análisis , Óxido Nitroso/análisis , Factores de Tiempo
19.
Sci Rep ; 5: 17361, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26615911

RESUMEN

Pasture-based livestock systems are often associated with losses of reactive forms of nitrogen (N) to the environment. Research has focused on losses to air and water due to the health, economic and environmental impacts of reactive N. Di-nitrogen (N2) emissions are still poorly characterized, both in terms of the processes involved and their magnitude, due to financial and methodological constraints. Relatively few studies have focused on quantifying N2 losses in vivo and fewer still have examined the relative contribution of the different N2 emission processes, particularly in grazed pastures. We used a combination of a high (15)N isotopic enrichment of applied N with a high precision of determination of (15)N isotopic enrichment by isotope-ratio mass spectrometry to measure N2 emissions in the field. We report that 55.8 g N m(-2) (95%, CI 38 to 77 g m(-2)) was emitted as N2 by the process of co-denitrification in pastoral soils over 123 days following urine deposition (100 g N m(-2)), compared to only 1.1 g N m(-2) (0.4 to 2.8 g m(-2)) from denitrification. This study provides strong evidence for co-denitrification as a major N2 production pathway, which has significant implications for understanding the N budgets of pastoral ecosystems.


Asunto(s)
Desnitrificación , Pradera , Herbivoria , Nitrógeno/análisis , Óxido Nitroso/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA