Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473935

RESUMEN

Vagal neurostimulation (VNS) is used for the treatment of epilepsy and major medical-refractory depression. VNS has neuropsychiatric functions and systemic anti-inflammatory activity. The objective of this study is to measure the clinical efficacy and impact of VNS modulation in depressive patients. Six patients with refractory depression were enrolled. Depression symptoms were assessed with the Montgomery-Asberg Depression Rating, and anxiety symptoms with the Hamilton Anxiety Rating Scale. Plasmas were harvested prospectively before the implantation of VNS (baseline) and up to 4 years or more after continuous therapy. Forty soluble molecules were measured in the plasma by multiplex assays. Following VNS, the reduction in the mean depression severity score was 59.9% and the response rate was 87%. Anxiety levels were also greatly reduced. IL-7, CXCL8, CCL2, CCL13, CCL17, CCL22, Flt-1 and VEGFc levels were significantly lowered, whereas bFGF levels were increased (p values ranging from 0.004 to 0.02). This exploratory study is the first to focus on the long-term efficacy of VNS and its consequences on inflammatory biomarkers. VNS may modulate inflammation via an increase in blood-brain barrier integrity and a reduction in inflammatory cell recruitment. This opens the door to new pathways involved in the treatment of refractory depression.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento , Estimulación del Nervio Vago , Humanos , Proyectos Piloto , Trastorno Depresivo Resistente al Tratamiento/psicología , Depresión , Resultado del Tratamiento , Inflamación
2.
J Immunol ; 207(1): 77-89, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34135061

RESUMEN

B lymphocytes have multiple functions central to humoral immunity, including Ag presentation to T cells, cytokine secretion, and differentiation into Ab-secreting plasma cells. In vitro expansion of human B cells by continuous IL-4 stimulation and engagement of their CD40 receptor by CD40L has allowed the use of these IL-4-CD40-B cells in research for the induction of Ag-specific T cell immune responses. However, in vivo, follicular helper T cells also influence B cell activity through the secretion of IL-21. The impact of both cytokines on multiple B cell functions is not clearly defined. To further understand these cytokines in CD40-B cell biology, we stimulated CD40-B cells with IL-4 or IL-21 or both (Combo) and characterized the proliferation, subsets, and functions of these cells. We demonstrate that IL-21- and Combo-CD40-B cells are highly proliferative cells that can be rapidly expanded to high numbers. We show that IL-21-CD40-B cells polarize to Ab-secreting plasma cells, whereas IL-4- and Combo-CD40-B cells are mostly activated mature B cells that express molecules associated with favorable APC functions. We further demonstrate that both IL-4- and Combo-CD40-B cells are efficient in promoting T cell activation and proliferation compared with IL-21-CD40-B cells. Thus, our study provides a better appreciation of CD40-B cell plasticity and biology. In addition, the stimulation of B cells with CD40L, IL-4, and IL-21 allows for the fast generation of high numbers of efficient APC, therefore providing a prospective tool for research and clinical applications such as cancer immunotherapy.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/inmunología , Linfocitos B/inmunología , Ligando de CD40/inmunología , Interleucina-4/inmunología , Interleucinas/inmunología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
3.
Mol Ther ; 30(5): 1885-1896, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34687845

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic requires the continued development of safe, long-lasting, and efficacious vaccines for preventive responses to major outbreaks around the world, and especially in isolated and developing countries. To combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we characterize a temperature-stable vaccine candidate (TOH-Vac1) that uses a replication-competent, attenuated vaccinia virus as a vector to express a membrane-tethered spike receptor binding domain (RBD) antigen. We evaluate the effects of dose escalation and administration routes on vaccine safety, efficacy, and immunogenicity in animal models. Our vaccine induces high levels of SARS-CoV-2 neutralizing antibodies and favorable T cell responses, while maintaining an optimal safety profile in mice and cynomolgus macaques. We demonstrate robust immune responses and protective immunity against SARS-CoV-2 variants after only a single dose. Together, these findings support further development of our novel and versatile vaccine platform as an alternative or complementary approach to current vaccines.


Asunto(s)
COVID-19 , Vacunas , Animales , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Inmunidad , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Linfocitos T
4.
J Neuroinflammation ; 16(1): 253, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31801576

RESUMEN

BACKGROUND: Aneurysmal subarachnoid hemorrhage (SAH) is a catastrophic disease with devastating consequences, including a high mortality rate and severe disabilities among survivors. Inflammation is induced following SAH, but the exact role and phenotype of innate immune cells remain poorly characterized. We investigated the inflammatory components of the early brain injury in an animal model and in SAH patients. METHOD: SAH was induced through injection of blood in the subarachnoid space of C57Bl/6 J wild-type mice. Prospective blood collections were obtained at 12 h, days 1, 2, and 7 to evaluate the systemic inflammatory consequences of SAH by flow cytometry and enzyme-linked immunosorbent-assay (ELISA). Brains were collected, enzymatically digested, or fixed to characterize infiltrating inflammatory cells and neuronal death using flow cytometry and immunofluorescence. Phenotypic evaluation was performed at day 7 using the holding time and footprint tests. We then compared the identified inflammatory proteins to the profiles obtained from the plasma of 13 human SAH patients. RESULTS: Following SAH, systemic IL-6 levels increased rapidly, whereas IL-10 levels were reduced. Neutrophils were increased both in the brain and in the blood reflecting local and peripheral inflammation following SAH. More intracerebral pro-inflammatory monocytes were found at early time points. Astrocyte and microglia activation were also increased, and mice had severe motor deficits, which were associated with an increase in the percentage of caspase-3-positive apoptotic neurons. Similarly, we found that IL-6 levels in patients were rapidly increased following SAH. ICAM-1, bFGF, IL-7, IL-12p40, and MCP-4 variations over time were different between SAH patients with good versus bad outcomes. Moreover, high levels of Flt-1 and VEGF at admission were associated with worse outcomes. CONCLUSION: SAH induces an early intracerebral infiltration and peripheral activation of innate immune cells. Furthermore, microglia and astrocytic activation are present at later time points. Our human and mouse data illustrate that SAH is a systemic inflammatory disease and that immune cells represent potential therapeutic targets to help this population of patients in need of new treatments.


Asunto(s)
Encéfalo/inmunología , Encéfalo/patología , Inmunidad Innata/fisiología , Hemorragia Subaracnoidea/inmunología , Hemorragia Subaracnoidea/patología , Animales , Encéfalo/metabolismo , Lesiones Encefálicas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Hemorragia Subaracnoidea/metabolismo
5.
Eur J Immunol ; 47(2): 269-279, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27873323

RESUMEN

Vaccination with antigen-pulsed CD40-activated B (CD40-B) cells can efficiently lead to the in vivo differentiation of naive CD8+ T cells into fully functional effectors. In contrast to bone marrow-derived dendritic cell (BMDC) vaccination, CD40-B cell priming does not allow for memory CD8+ T-cell generation but the reason for this deficiency is unknown. Here, we show that compared to BMDCs, murine CD40-B cells induce lower expression of several genes regulated by T-cell receptor signaling, costimulation, and inflammation (signals 1-3) in mouse T cells. The reduced provision of signals 1 and 2 by CD40-B cells can be explained by a reduction in the quality and duration of the interactions with naive CD8+ T cells as compared to BMDCs. Furthermore, CD40-B cells produce less inflammatory mediators, such as IL-12 and type I interferon, and increasing inflammation by coadministration of polyriboinosinic-polyribocytidylic acid with CD40-B-cell immunization allowed for the generation of long-lived and functional CD8+ memory T cells. In conclusion, it is possible to manipulate CD40-B-cell vaccination to promote the formation of long-lived functional CD8+ memory T cells, a key step before translating the use of CD40-B cells for therapeutic vaccination.


Asunto(s)
Linfocitos B/inmunología , Células de la Médula Ósea/inmunología , Linfocitos T CD8-positivos/inmunología , Inflamación/inmunología , Polinucleótidos/administración & dosificación , Animales , Linfocitos B/trasplante , Antígenos CD40/metabolismo , Ligando de CD40/genética , Ligando de CD40/metabolismo , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo , Fibroblastos/inmunología , Fibroblastos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Humanos , Memoria Inmunológica , Interleucina-4/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Poli I-C , Vacunación
7.
Eur J Immunol ; 44(6): 1604-14, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24643698

RESUMEN

MHC class I (MHC I) antigen presentation is a ubiquitous process by which cells present endogenous proteins to CD8(+) T lymphocytes during immune surveillance and response. Hereditary hemochromatosis protein, HFE, is involved in cellular iron uptake but, while structurally homologous to MHC I, is unable to bind peptides. However, increasing evidence suggests a role for HFE in the immune system. Here, we investigated the impact of HFE on CD8(+) T-lymphocyte activation. Using transient HFE transfection assays in a model of APCs, we show that WT HFE (HFEWT ), but not C282Y-mutated HFE, inhibits secretion of MIP-1ß from antigen-specific CD8(+) T lymphocytes. HFEWT expression also resulted in major decreases in CD8(+) T-lymphocyte activation as measured by 4-1BB expression. We further demonstrate that inhibition of CD8(+) T-lymphocyte activation was independent of MHC I surface levels, ß2-m competition, HFE interaction with transferrin receptor, antigen origin, or epitope affinity. Finally, we identified the α1-2 domains of HFEWT as being responsible for inhibiting CD8(+) T-lymphocyte activation. Our data imply a new role for HFEWT in altering CD8(+) T-lymphocyte reactivity, which could modulate antigen immunogenicity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Regulación de la Expresión Génica/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Activación de Linfocitos , Proteínas de la Membrana/inmunología , Sustitución de Aminoácidos , Linfocitos T CD8-positivos/citología , Regulación de la Expresión Génica/genética , Células HEK293 , Proteína de la Hemocromatosis , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Proteínas de la Membrana/genética , Mutación Missense , Estructura Terciaria de Proteína , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
8.
Methods Mol Biol ; 2614: 37-46, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587117

RESUMEN

Immune monitoring of circulating immune cells in the blood provides insight into a patient's own immune response over the course of a treatment or disease progression. Information such as whether immune cells are functional or non-functional and what specific proteins they express or secrete can be essential to understand if (and how) a treatment is working or a disease is progressing. To do so, it requires careful handling and storage of precious biological samples with the goals of obtaining a large amount of information from limited samples and minimizing future research costs by the use of banked samples. Many factors, including blood sample types, time of collection, containers used, preservatives and other additives, transport means, and length of transit time, all affect the quality of the samples and the stability of biomarkers and must be considered at the initial collection stage. An efficient study design includes provisions for further processing of the original samples, such as cryopreservation of isolated cells, purification of DNA and RNA, and preparation of specimens for genomic, immunological, and biochemical analyses. Development of standard operating procedures and quality control plans is a safeguard of the samples' quality and of the validity of the results. Here, we focus on the collection and processing of blood suitable for plasma and peripheral blood mononuclear cell (PBMC) banking, including collection, processing, and storage of samples, based on our experience.


Asunto(s)
Criopreservación , Leucocitos Mononucleares , Humanos , Leucocitos Mononucleares/metabolismo , Control de Calidad , Biomarcadores/metabolismo , Manejo de Especímenes/métodos
9.
Biomater Sci ; 11(10): 3561-3573, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37000484

RESUMEN

Adoptive cell therapy (ACT) shows success against treatment-resistant cancers, but is limited by the large number of intravenously delivered T cells required and toxicity related to systemic administration. In this work, we hypothesized that localized T cell delivery in an in situ gelling chitosan hydrogel will allow similar treatment efficacy despite delivering fewer cells than systemic intravenous delivery. A rapidly gelling chitosan gel with good mechanical properties was used for this study. Gel biocompatibility and biodegradability were tested over 8 weeks in mice. No adverse effects were observed. The gel elicited a local granulomatous reaction (foreign body reaction), degrading by about 75% volume at 8 weeks. The survival, escape and bioactivity against the tumour cells of encapsulated murine lymphocytes (OT-I) and human Jurkat cells were confirmed in vitro by live/dead assay and flow cytometry. Efficacy was studied using a mouse tumour model where the injected OT-I can specifically recognize and attack ovalbumin (OVA) protein-expressing tumours. The OT-I cell delivery scaffold was compared to untreated controls, OT-I in saline and intravenous systemic treatment with 3-fold more OT-I, observing tumour growth and localization by intravital microscopy and histology. Gel-encapsulated OT-I limited tumour growth significantly up to 11 days after treatment compared to that of untreated mice and mice with longer PBS-suspended OT-I treatment (9 days), but slightly less than that of mice with IV-delivered OT-I treatment (14 days). No significant difference was observed when directly comparing the gel and IV treatments. Although further optimization of the treatment is required, this work shows the feasibility and potential of the chitosan gel for localised OT-I delivery in cancer immunotherapy.


Asunto(s)
Quitosano , Neoplasias , Animales , Ratones , Humanos , Linfocitos T , Inmunoterapia , Modelos Animales de Enfermedad , Hidrogeles , Ratones Endogámicos C57BL
10.
Nat Med ; 29(8): 2121-2132, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37414899

RESUMEN

Fecal microbiota transplantation (FMT) represents a potential strategy to overcome resistance to immune checkpoint inhibitors in patients with refractory melanoma; however, the role of FMT in first-line treatment settings has not been evaluated. We conducted a multicenter phase I trial combining healthy donor FMT with the PD-1 inhibitors nivolumab or pembrolizumab in 20 previously untreated patients with advanced melanoma. The primary end point was safety. No grade 3 adverse events were reported from FMT alone. Five patients (25%) experienced grade 3 immune-related adverse events from combination therapy. Key secondary end points were objective response rate, changes in gut microbiome composition and systemic immune and metabolomics analyses. The objective response rate was 65% (13 of 20), including four (20%) complete responses. Longitudinal microbiome profiling revealed that all patients engrafted strains from their respective donors; however, the acquired similarity between donor and patient microbiomes only increased over time in responders. Responders experienced an enrichment of immunogenic and a loss of deleterious bacteria following FMT. Avatar mouse models confirmed the role of healthy donor feces in increasing anti-PD-1 efficacy. Our results show that FMT from healthy donors is safe in the first-line setting and warrants further investigation in combination with immune checkpoint inhibitors. ClinicalTrials.gov identifier NCT03772899 .


Asunto(s)
Trasplante de Microbiota Fecal , Melanoma , Animales , Ratones , Trasplante de Microbiota Fecal/métodos , Inhibidores de Puntos de Control Inmunológico , Heces/microbiología , Melanoma/terapia , Inmunoterapia , Resultado del Tratamiento
11.
J Transl Med ; 10: 205, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23034130

RESUMEN

Prediction of clinical outcome in cancer is usually achieved by histopathological evaluation of tissue samples obtained during surgical resection of the primary tumor. Traditional tumor staging (AJCC/UICC-TNM classification) summarizes data on tumor burden (T), presence of cancer cells in draining and regional lymph nodes (N) and evidence for metastases (M). However, it is now recognized that clinical outcome can significantly vary among patients within the same stage. The current classification provides limited prognostic information, and does not predict response to therapy. Recent literature has alluded to the importance of the host immune system in controlling tumor progression. Thus, evidence supports the notion to include immunological biomarkers, implemented as a tool for the prediction of prognosis and response to therapy. Accumulating data, collected from large cohorts of human cancers, has demonstrated the impact of immune-classification, which has a prognostic value that may add to the significance of the AJCC/UICC TNM-classification. It is therefore imperative to begin to incorporate the 'Immunoscore' into traditional classification, thus providing an essential prognostic and potentially predictive tool. Introduction of this parameter as a biomarker to classify cancers, as part of routine diagnostic and prognostic assessment of tumors, will facilitate clinical decision-making including rational stratification of patient treatment. Equally, the inherent complexity of quantitative immunohistochemistry, in conjunction with protocol variation across laboratories, analysis of different immune cell types, inconsistent region selection criteria, and variable ways to quantify immune infiltration, all underline the urgent requirement to reach assay harmonization. In an effort to promote the Immunoscore in routine clinical settings, an international task force was initiated. This review represents a follow-up of the announcement of this initiative, and of the J Transl Med. editorial from January 2012. Immunophenotyping of tumors may provide crucial novel prognostic information. The results of this international validation may result in the implementation of the Immunoscore as a new component for the classification of cancer, designated TNM-I (TNM-Immune).


Asunto(s)
Comités Consultivos , Clasificación/métodos , Internacionalidad , Neoplasias/clasificación , Neoplasias/inmunología , Humanos , Neoplasias/terapia , Resultado del Tratamiento , Microambiente Tumoral
12.
Cytokine ; 59(1): 27-30, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22503116

RESUMEN

IL-10 is vastly studied for its anti-inflammatory properties on most immune cells. However, it has been reported that IL-10 activates B cells, up-regulates their MHC class II molecules and prevents apoptosis. As MARCH1 was shown to be responsible for the intracellular sequestration of MHC class II molecules in dendritic cells and monocytes in response to IL-10, we set out to clarify the role of this ubiquitin ligase in B cells. Here, we demonstrate in mice that splenic follicular B cells represent the major cell population that up-regulate MHC II molecules in the presence of IL-10. Activation of these cells through TLR4, CD40 or the IL-10 receptor caused the down-regulation of MARCH1 mRNA. Accordingly, B cells from MARCH1-deficient mice do not up-regulate I-A(b) in response to IL-10. In all, our results demonstrate that IL-10 can have opposite effects on MARCH1 regulation in different cell types.


Asunto(s)
Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Regulación hacia Abajo/efectos de los fármacos , Antígenos de Histocompatibilidad Clase II/genética , Interleucina-10/farmacología , Activación de Linfocitos/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Regulación hacia Abajo/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Activación de Linfocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
13.
APL Bioeng ; 6(4): 041502, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36561511

RESUMEN

Cancer immunotherapies have revolutionized the treatment of numerous cancers, with exciting results often superior to conventional treatments, such as surgery and chemotherapy. Despite this success, limitations such as limited treatment persistence and toxic side effects remain to be addressed to further improve treatment efficacy. Biomaterials offer numerous advantages in the concentration, localization and controlled release of drugs, cancer antigens, and immune cells in order to improve the efficacy of these immunotherapies. This review summarizes and highlights the most recent advances in the use of biomaterials for immunotherapies including drug delivery and cancer vaccines, with a particular focus on biomaterials for immune cell delivery.

14.
Matrix Biol ; 111: 264-288, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35842012

RESUMEN

The extracellular matrix (ECM) plays critical roles in breast cancer development. Whether ECM composition is regulated by the phosphorylation of eIF4E on serine 209, an event required for tumorigenesis, has not been explored. Herein, we used proteomics and mouse modeling to investigate the impact of mutating serine 209 to alanine on eIF4E (i.e., S209A) on mammary gland (MG) ECM. The proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD028953. We discovered that S209A knock-in mice, expressing a non-phosphorylatable form of eIF4E, have less collagen-I deposition in native and tumor-bearing MGs, leading to altered tumor cell invasion. Additionally, phospho-eIF4E deficiency impacts collagen topology; fibers at the tumor-stroma boundary in phospho-eIF4E-deficient mice run parallel to the tumor edge but radiate outwards in wild-type mice. Finally, a phospho-eIF4E-deficient tumor microenvironment resists anti-PD-1 therapy-induced collagen deposition, correlating with an increased anti-tumor response to immunotherapy. Clinically, we showed that collagen-I and phospho-eIF4E are positively correlated in human breast cancer samples, and that stromal phospho-eIF4E expression is influenced by tumor proximity. Together, our work defines the importance of phosphorylation of eIF4E on S209 as a regulator of MG collagen architecture in the tumor microenvironment, thereby positioning phospho-eIF4E as a therapeutic target to augment response to therapy.


Asunto(s)
Neoplasias de la Mama , Glándulas Mamarias Humanas , Animales , Neoplasias de la Mama/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Femenino , Humanos , Glándulas Mamarias Humanas/metabolismo , Ratones , Fosforilación , Proteómica , Serina/metabolismo , Microambiente Tumoral
15.
Sci Immunol ; 7(70): eabi5072, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35363543

RESUMEN

Melanoma is an immunogenic cancer with a high response rate to immune checkpoint inhibitors (ICIs). It harbors a high mutation burden compared with other cancers and, as a result, has abundant tumor-infiltrating lymphocytes (TILs) within its microenvironment. However, understanding the complex interplay between the stroma, tumor cells, and distinct TIL subsets remains a substantial challenge in immune oncology. To properly study this interplay, quantifying spatial relationships of multiple cell types within the tumor microenvironment is crucial. To address this, we used cytometry time-of-flight (CyTOF) imaging mass cytometry (IMC) to simultaneously quantify the expression of 35 protein markers, characterizing the microenvironment of 5 benign nevi and 67 melanomas. We profiled more than 220,000 individual cells to identify melanoma, lymphocyte subsets, macrophage/monocyte, and stromal cell populations, allowing for in-depth spatial quantification of the melanoma microenvironment. We found that within pretreatment melanomas, the abundance of proliferating antigen-experienced cytotoxic T cells (CD8+CD45RO+Ki67+) and the proximity of antigen-experienced cytotoxic T cells to melanoma cells were associated with positive response to ICIs. Our study highlights the potential of multiplexed single-cell technology to quantify spatial cell-cell interactions within the tumor microenvironment to understand immune therapy responses.


Asunto(s)
Melanoma , Humanos , Citometría de Imagen , Linfocitos Infiltrantes de Tumor , Linfocitos T Citotóxicos , Microambiente Tumoral
16.
J Gen Virol ; 92(Pt 5): 1162-1171, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21307226

RESUMEN

Current influenza vaccines containing primarily hypervariable haemagglutinin and neuraminidase proteins must be prepared against frequent new antigenic variants. Therefore, there is an ongoing effort to develop influenza vaccines that also elicit strong and sustained cytotoxic responses against highly conserved determinants such as the matrix (M1) protein and nucleoprotein (NP). However, their antigenic presentation properties in humans are less defined. Accordingly, we analysed MHC class I and class II presentation of endogenously processed M1 and NP in human antigen presenting cells and observed expansion of both CD8(+)- and CD4(+)-specific effector T lymphocytes secreting gamma interferon and tumour necrosis factor. Further enhancement of basal MHC-II antigenic presentation did not improve CD4(+) or CD8(+) T-cell quality based on cytokine production upon challenge, suggesting that endogenous M1 and NP MHC-II presentation is sufficient. These new insights about T-lymphocyte expansion following endogenous M1 and NP MHC-I and -II presentation will be important to design complementary heterosubtypic vaccination strategies.


Asunto(s)
Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I/metabolismo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Proteínas de Unión al ARN/inmunología , Proteínas del Núcleo Viral/inmunología , Proteínas de la Matriz Viral/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Proliferación Celular , Células Cultivadas , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Interferón gamma/metabolismo , Proteínas de la Nucleocápside , Factor de Necrosis Tumoral alfa/metabolismo
17.
Cancer Immunol Immunother ; 60(8): 1119-25, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21681374

RESUMEN

Polyfunctionality is the capacity of a T-cell to execute a variety of effector functions mainly mediated by production of cytokines, chemokines, and cytolytic enzymes. Studies in anti-viral immunity have acknowledged the importance of polyfunctionality in the clearance of infections and maintenance of protection. Although accepted in the field, this concept has not been as well characterized in cancer immunology. Here, we report the polyfunctionality profile analysis of a CD8(+) T-cell clone isolated from a lung cancer patient and directed against Dickkopf-1, a potentially new tumor-associated antigen (TAA). The clone showed Tc1/Th1 effector tendencies confirmed by secretion of cytokines such as IFN-γ, IP-10, MIP-1ß, MIP-1α, IL-2, GM-CSF, and expression of cytolytic enzyme granzyme B. This secretion profile is of particular interest in the context of an anti-tumor response. Although secretion of IL-5 and IL-13 was also detected, absence of IL-4 and IL-10 opposes the idea of cytokine-dependent Th1 inhibition. Establishing a comprehensive cytokine secretion profile may help predict T cells' specific response against a novel TAA in a peptide vaccination context. It may further help in selecting clones with an optimal functional profile from the peripheral blood of cancer patients for expansion and adoptive cell transfer therapy.


Asunto(s)
Autoantígenos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Inmunoterapia Adoptiva , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias Pulmonares/metabolismo , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Autoantígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Células Clonales , Biología Computacional , Citocinas/metabolismo , Citotoxicidad Inmunológica , Mapeo Epitopo , Epítopos de Linfocito T/química , Epítopos de Linfocito T/metabolismo , Granzimas/metabolismo , Antígenos HLA-A/metabolismo , Antígeno HLA-A2 , Humanos , Péptidos y Proteínas de Señalización Intercelular/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Unión Proteica , Células TH1/inmunología
18.
J Immunol ; 183(12): 7752-60, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19933867

RESUMEN

Previous cancer vaccination approaches have shown some efficiency in generating measurable immune responses, but they have rarely led to tumor regression. It is therefore possible that tumors emerge with the capacity to down-regulate immune counterparts, through the local production of immunosuppressive molecules, such as IDO. Although it is known that IDO exerts suppressive effects on T cell functions, the mechanisms of IDO regulation in tumor cells remain to be characterized. Here, we demonstrate that activated T cells can induce functional IDO expression in breast and kidney tumor cell lines, and that this is partly attributable to IFN-gamma. Moreover, we found that IL-13, a Th2 cytokine, has a negative modulatory effect on IDO expression. Furthermore, we report IDO expression in the majority of breast and kidney carcinoma samples, with infiltration of activated Th1-polarized T cells in human tumors. These findings demonstrate complex control of immune activity within tumors. Future immune therapeutic interventions should thus include strategies to counteract these negative mechanisms.


Asunto(s)
Neoplasias de la Mama/inmunología , Carcinoma de Células Renales/inmunología , Regulación Enzimológica de la Expresión Génica/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/biosíntesis , Activación de Linfocitos/inmunología , Células TH1/inmunología , Células Th2/inmunología , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Carcinoma de Células Renales/enzimología , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Movimiento Celular/inmunología , Técnicas de Cocultivo , Humanos , Inmunofenotipificación , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/fisiología , Interferón gamma/metabolismo , Interferón gamma/fisiología , Activación de Linfocitos/genética , Linfocitos Infiltrantes de Tumor/enzimología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Células TH1/enzimología , Células TH1/metabolismo , Células TH1/patología , Células Th2/enzimología , Células Th2/patología , Células Tumorales Cultivadas
19.
PLoS One ; 16(12): e0261987, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34972158

RESUMEN

Nanoparticles made of the coat protein of papaya mosaic virus (PapMV) and a single-strand RNA were previously shown to be an efficient antigen presentation system for the trigger of cellular immunity. Engineering of PapMV nano with a cytotoxic T lymphocyte epitope was previously shown activating specific T lymphocytes through a proteasome-independent major histocompatibility complex class I (MHC-I) cross-presentation. In this study, we provide new insights into the mechanism of the MHC-I cross-presentation mediated by PapMV nanoparticles. We demonstrate that PapMV nanoparticles do not require the transporter associated with antigen presentation (TAP), but rather depend on lysosome acidification and cathepsin S protease activity for presentation of the T cell epitope. We have also linked the induction of autophagy with this vacuolar MHC-I cross-presentation process. Interestingly, autophagy is induced in antigen-presenting cells after PapMV nanoparticles exposure and inhibition of autophagy reduce MHC-I cross-presentation. This study demonstrates that autophagy is associated with TAP- and proteasome-independent MHC-I cross-presentation. A deeper understanding of the autophagy-dependent MHC-I cross-presentation will be useful in designing vaccination platforms that aim to trigger an efficient cytotoxic T lymphocyte response.


Asunto(s)
Presentación de Antígeno , Células Presentadoras de Antígenos/inmunología , Autofagia , Reactividad Cruzada/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Catepsinas/química , Cloroquina/química , Epítopos/química , Epítopos de Linfocito T/química , Humanos , Lisosomas/química , Microscopía Confocal , Nanopartículas/química , Potexvirus , Ingeniería de Proteínas , ARN/química
20.
J Immunother Cancer ; 9(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33771891

RESUMEN

BACKGROUND: Hydrolysis of extracellular ATP to adenosine (eADO) is an important immune checkpoint in cancer immunology. We here investigated the impact of the eADO pathway in high-grade serous ovarian cancer (HGSC) using multiparametric platforms. METHODS: We performed a transcriptomic meta-analysis of eADO-producing CD39 and CD73, an eADO signaling gene signature, immune gene signatures and clinical outcomes in approximately 1200 patients with HGSC. Protein expression, localization and prognostic impact of CD39, CD73 and CD8 were then performed on approximately 1000 cases on tissue microarray, and tumor-infiltrating lymphocytes (TILs) were analyzed by flow cytometry and single-cell RNA sequencing on a subset of patients. RESULTS: Concomitant CD39 and CD73 gene expression, as well as high levels of an eADO gene signature, were associated with worse prognosis in patients with HGSC, notably in the immunoregulatory molecular subtype, characterized by an immune-active microenvironment. CD39 was further associated with primary chemorefractory and chemoresistant human HGSC and platinum-based chemotherapy of murine HGSC was significantly more effective in CD39-deficient mice. At protein level, CD39 and CD73 were predominantly expressed by cancer-associated fibroblasts, and CD39 was expressed on severely exhausted, clonally expanded and putative tissue-resident memory TILs. CONCLUSIONS: Our study revealed the clinical, immunological, subtype-specific impacts of eADO signaling in HGSC, unveiled the chemoprotective effect of CD39 and supports the evaluation of eADO-targeting agents in patients with ovarian cancer.


Asunto(s)
5'-Nucleotidasa/genética , Adenosina/metabolismo , Antígenos CD/metabolismo , Apirasa/genética , Apirasa/metabolismo , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Neoplasias Quísticas, Mucinosas y Serosas/genética , Neoplasias Ováricas/genética , Transcriptoma , 5'-Nucleotidasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antígenos CD/genética , Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Bases de Datos Genéticas , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Hidrólisis , Ratones Noqueados , Persona de Mediana Edad , Clasificación del Tumor , Neoplasias Quísticas, Mucinosas y Serosas/tratamiento farmacológico , Neoplasias Quísticas, Mucinosas y Serosas/inmunología , Neoplasias Quísticas, Mucinosas y Serosas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/metabolismo , RNA-Seq , Transducción de Señal , Análisis de la Célula Individual , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA