Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Chemphyschem ; 24(1): e202200324, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36000956

RESUMEN

The photodetachment and stability of R-Mandelate, the deprotonated form of the R-Mandelic acid, was investigated by observing the neutral species issued from either simple photodetachment or dissociative photodetachment in a cold anions set-up. R-Mandalate has the possibility to form an intramolecular ionic hydrogen-bond between adjacent hydroxyl and carboxylate groups. The potential energy surface along the proton transfer (PT) coordinate between both groups (O- …H+ …- OCO) features a single local minima, with the proton localized on the O- group (OH…- OCO). However, the structure with the proton localized on the - OCO group (O- …HOCO) is also observed because it falls within the extremity of the vibrational wavefunction of the OH…- OCO isomer along the PT coordinate. The stability of the corresponding radicals, produced upon photodetachment, is strongly dependent on the position of the proton in the anion: the radicals produced from the OH…- OCO isomer decarboxylate without barrier, while the radicals produced from the O- …HOCO isomer are stable.


Asunto(s)
Hidrógeno , Protones , Isomerismo , Ácidos Mandélicos , Aniones/química
2.
J Phys Chem A ; 125(34): 7406-7413, 2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34415759

RESUMEN

The decarboxylation (CO2 loss) mechanism of cold monodeprotonated phthalic acid was studied in a photodissociation action spectrometer by quantifying mass-selected product anions and neutral particles as a function of the excitation energy. The analysis proceeded by interpreting the translational energy distribution of the generated uncharged products, and with the help of quantum calculations. In particular, this study reveals different fragmentation pathways in the deprotonated anion and in the radical generated upon electron photodetachment. Unlike the behavior found in other deprotonated aryl carboxylic acids, which do not fragment in the anion excited state, a double loss of CO2 molecules takes place in the phthalic monoanion. Moreover, at higher excitation energies the phthalic monoanion experiences decarboxylative photodetachment with a statistical distribution of product translational energies, which contrasts with the impulsive dissociation reactions characteristic of other aryl carboxylic anions.

3.
Phys Chem Chem Phys ; 22(22): 12502-12514, 2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32452507

RESUMEN

The photocatalytic oxidation of water with molecular or polymeric N-heterocyclic chromophores is a topic of high current interest in the context of artificial photosynthesis, that is, the conversion of solar energy to clean fuels. Hydrogen-bonded clusters of N-heterocycles with water molecules in a molecular beam are simple model systems for which the basic mechanisms of photochemical water oxidation can be studied under well-defined conditions. In this work, we explored the photoinduced H-atom transfer reaction in pyrimidine-water clusters yielding pyrimidinyl and hydroxyl radicals with laser spectroscopy, mass spectrometry and trajectory-based ab initio molecular dynamics simulations. The oxidation of water by photoexcited pyrimidine is unequivocally confirmed by the detection of the pyrimidinyl radical. The dynamics simulations provide information on the time scales and branching ratios of the reaction. While relaxation to local minima of the S1 potential-energy surface is the dominant reaction channel, the H-atom transfer reaction occurs on ultrafast time scales (faster than about 100 fs) with a branching ratio of a few percent.

4.
Phys Chem Chem Phys ; 21(4): 1797-1804, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30628606

RESUMEN

The competition between dissociative photodetachment and photodissociation of cold benzoate and naphthoate anions was studied through measurement of the kinetic energy of the neutral fragments and intact parent benzoyloxy and naphtoyloxy radicals as well as by detecting the anionic fragments whenever they are produced. For the benzoate anion, there is no ionic photodissociation and the radical dissociation occurs near the vertical photodetachment energy. This is in agreement with DFT calculations showing that the dissociation energy in CO2 and C6H5˙ is very low. The dissociation barrier can be deduced from experimental results and calculations to be (0.7 ± 0.1) eV, which makes the benzoyloxyradical C6H5COO˙ very unstable, although more stable than the acetyloxy radical. In the case of naphthoate, the observation of negative fragments at low excitation energies demonstrates the opening of the ionic photodissociation channel in the excited state of the naphthoate anion, whose yield decreases at higher energies when the dissociative photodetachment channel opens.

5.
Phys Chem Chem Phys ; 20(9): 6134-6145, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29451581

RESUMEN

Experimental and theoretical investigations of the excited states of protonated 1- and 2-aminonaphthalene are presented. The electronic spectra are obtained by laser induced photofragmentation of the ions captured in a cold ion trap. Using ab initio calculations, the electronic spectra can be assigned to different tautomers which have the proton on the amino group or on the naphthalene moiety. It is shown that the tautomer distribution can be varied by changing the electrospray source conditions, favoring either the most stable form in solution (amino protonation) or that in the gas phase (aromatic ring protonation). Calculations for larger amino-polyaromatics predict that these systems should behave as "proton sponges" i.e. have a proton affinity larger than 11 eV.

6.
Phys Chem Chem Phys ; 19(17): 10777-10785, 2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28140412

RESUMEN

The conformer-selected ultraviolet (UV) and infrared (IR) spectra of protonated noradrenaline were measured using an electrospray/cryogenic ion trap technique combined with photo-dissociation spectroscopy. By comparing the UV photo dissociation (UVPD) spectra with the UV-UV hole burning (HB) spectra, it was found that five conformers coexist under ultra-cold conditions. Based on the spectral features of the IR dip spectra of each conformer, two different conformations on the amine side chain were identified. Three conformers (group I) were assigned to folded and others (group II) to extended structures by comparing the observed IR spectra with the calculated ones. Observation of the significantly less-stable extended conformers strongly suggests that the extended structures are dominant in solution and are detected in the gas phase by kinetic trapping. The conformers in each group are assignable to rotamers of OH orientations in the catechol ring. By comparing the UV-UV HB spectra and the calculated Franck-Condon spectra obtained by harmonic vibrational analysis of the S1 state, with the aid of relative stabilization energies of each conformer in the S0 state, the absolute orientations of catechol OHs of the observed five conformers were successfully determined. It was found that the 0-0 transition of one folded conformer is red-shifted by about 1000 cm-1 from the others. The significant red-shift was explained by a large contribution of the πσ* state to S1 in the conformer in which an oxygen atom of the meta-OH group is close to the ammonium group.


Asunto(s)
Modelos Moleculares , Norepinefrina/química , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta , Conformación Molecular , Protones
7.
J Phys Chem A ; 121(13): 2580-2587, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28301145

RESUMEN

Photofragmentation electronic spectra of isolated single-isomeric N-protonated quinoline (quinolinium) and isoquinoline (isoquinolinium) ions have been measured at a temperature of ∼40 K using a mass-selective, 10 cm-1 spectral resolution, photodissociation spectrometer. Additionally, ab initio adiabatic transition energies calculated using the RI-ADC(2) method have been employed to assist in the assignment of the spectra. Three electronic transitions having ππ* character were clearly evidenced for both protonated ions within the UV and deep-UV spectral ranges. The corresponding spectra at room temperature were previously reported by Hansen et al., together with TD-DFT calculations and a careful analysis of the possible fragmentation mechanisms. This information will be complemented in the present study by appending better resolved spectra, characteristic of cold ions, in which well-defined vibrational progressions associated with the S1 ← S0 and S3 ← S0 transitions exhibit clear 0-0 bands at hν0-0 = 27868 and 42230 cm-1, for protonated quinoline, and at hν0-0 = 28043 and 41988 cm-1, for protonated isoquinoline. Active vibrations in the spectra were assigned with the help of calculated normal modes, looking very similar to those of the structurally related protonated naphthalene. Finally, we have observed that the bandwidths associated with the deep-UV S3 ← S0 transition denote a lifetime for the S3 excited state in the subpicosecond time scale, in contrast with that of S1.

8.
J Phys Chem A ; 121(34): 6429-6439, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28777573

RESUMEN

Charge transfer reactions are ubiquitous in chemical reactivity and often viewed as ultrafast processes. For DNA, femtochemistry has undeniably revealed the primary stage of the deactivation dynamics of the locally excited state following electronic excitation. We here demonstrate that the full time scale excited state dynamics can be followed up to milliseconds through an original pump-probe photodissociation scheme applied to cryogenic ion spectroscopy. Protonated cytosine is chosen as a benchmark system in which the locally excited 1ππ* state decays in the femtosecond range toward long-lived charge transfer and triplet states with lifetimes ranging from microseconds to milliseconds, respectively. A three-step mechanism (1ππ* → 1CT → 3ππ*) is proposed where internal conversion from each state can occur leading ultimately to fragmentation in the ground electronic state.

9.
Phys Chem Chem Phys ; 18(36): 25637-25644, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27711521

RESUMEN

Ab initio calculations predict that pyridine (Py) can act as a photo-catalyst to split water by the absorption of a UV photon following the reaction Py-H2O + hν → PyH˙ + OH˙. To test this prediction, we performed two types of experiments: in the first, we characterize the electronic spectroscopy of the PyH˙ radical in the gas phase. In the second, we evidence the reaction through the UV excitation of molecular Py-(H2O)n clusters obtained in a supersonic expansion and monitoring the PyH˙ reaction product. The results show unambiguously that PyH˙ is produced, and thus that water is split using pyridine as a photo-catalyst.

10.
J Phys Chem A ; 120(22): 3897-905, 2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-27216229

RESUMEN

Gas phase photodissociation electronic spectra of protonated azobenzene (ABH(+)) and 4-(dimethylamino)azobenzene (dmaABH(+)) were measured in a cryogenically cooled ion trap at temperatures of a few tens of Kelvin. Experimental results were complemented with electronic structure calculations in the ground state at the MP2/cc-pVDZ level of theory, and in the low lying excited states using the RI-CC2 method. Calculated energies revealed that only the trans isomers of the azonium molecular ions (protonation site on the azo group) will likely exist in the trap at the temperatures achieved in the experiment. The first transition of trans-ABH(+) is π* ← π, and the absorption band in the spectrum appears strongly red-shifted from that of the neutral molecule. The calculations showed that upon excitation the quasi-planar ground state (S0) transforms into a chairlike excited state (S1) by twisting the CNNC dihedral angle about 96°. A 41 cm(-1) active vibrational progression found in the ABH(+) spectrum may be associated with the twisting of the azo bond. Conversely, the electronic spectrum of dmaABH(+) exhibits a steep and unstructured S1 ← S0 absorption corresponding to a less distorted S1 state. The next two quasi-degenerate bands in the ABH(+) spectrum evidence sharper onsets and a charge transfer character. Using a second fragmentation laser and an additional He cooling pulse in the trap, it was possible to measure the UV spectrum of cold benzenediazonium fragments.

11.
J Phys Chem A ; 120(21): 3797-809, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27171787

RESUMEN

The excited state properties of protonated ortho (2-), meta (3-), and para (4-) aminopyridine molecules have been investigated through UV photofragmentation spectroscopy and excited state coupled-cluster CC2 calculations. Cryogenic ion spectroscopy allows recording well-resolved vibronic spectroscopy that can be reproduced through Franck-Condon simulations of the ππ* local minimum of the excited state potential energy surface. The excited state lifetimes have also been measured through a pump-probe excitation scheme and compared to the estimated radiative lifetimes. Although protonated aminopyridines are rather simple aromatic molecules, their deactivation mechanisms are indeed quite complex with unexpected results. In protonated 3- and 4-aminopyridine, the fragmentation yield is negligible around the band origin, which implies the absence of internal conversion to the ground state. Besides, a twisted intramolecular charge transfer reaction is evidenced in protonated 4-aminopyridine around the band origin, while excited state proton transfer from the pyridinic nitrogen to the adjacent carbon atom opens with roughly 500 cm(-1) of excess energy.

12.
Phys Chem Chem Phys ; 17(39): 25755-60, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25790330

RESUMEN

The best determination of the most stable protonation site in aromatic molecules relies nowadays on the IR spectroscopy and ab initio calculations. It appears that these methods are not necessarily unambiguous and cannot always be safely employed. We present in this paper an example showing that electronic spectroscopy of cold ions complemented with ab initio calculations gives clear results on the protonation site. In the example given on the aminophenol isomers (in ortho, meta and para positions), the protonation site is assigned from the electronic spectroscopy and in particular we show that for the meta isomer the proton is not on the amino group as observed for the other isomers. It shows also that the protonation site is not conserved in the electrospray evaporation-ionization process.


Asunto(s)
Aminofenoles/química , Isomerismo , Modelos Moleculares , Espectroscopía de Fotoelectrones , Protones
13.
J Phys Chem A ; 119(51): 12730-5, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26637013

RESUMEN

The gas phase structure and excited state dynamics of o-aminophenol-H2O complex have been investigated using REMPI, IR-UV hole-burning spectroscopy, and pump-probe experiments with picoseconds laser pulses. The IR-UV spectroscopy indicates that the isomer responsible for the excitation spectrum corresponds to an orientation of the OH bond away from the NH2 group. The water molecule acts as H-bond acceptor of the OH group of the chromophore. The complexation of o-aminophenol with one water molecule induced an enhancement in the excited state lifetime on the band origin. The variation of the excited state lifetime of the complex with the excess energy from 1.4 ± 0.1 ns for the 0-0 band to 0.24 ± 0.3 ns for the band at 0-0 + 120 cm(-1) is very similar to the variation observed in the phenol-NH3 system. This experimental result suggests that the excited state hydrogen transfer reaction is the dominant channel for the non radiative pathway. Indeed, excited state ab initio calculations demonstrate that H transfer leading to the formation of the H3O(•) radical within the complex is the main reactive pathway.

14.
J Chem Phys ; 143(7): 074303, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26298130

RESUMEN

We present photo-fragmentation electronic spectra of the simplest protonated aromatic molecules, protonated benzene and toluene, recorded under medium resolution conditions and compared with the photo-fragmentation spectrum of protonated pyridine. Despite the resolution and cold temperature achieved in the experiment, the electronic spectra of protonated benzene and toluene are structure-less, thus intrinsically broadened. This is in agreement with the large geometrical changes and the fast dynamic toward internal conversion predicted by ab initio calculations for protonated benzene [Rode et al., J. Phys. Chem. A 113, 5865-5873 (2009)].

15.
J Chem Phys ; 143(4): 041103, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26233098

RESUMEN

The photo-induced damages of DNA in interaction with metal cations, which are found in various environments, still remain to be characterized. In this paper, we show how the complexation of a DNA base (cytosine (Cyt)) with a metal cation (Ag(+)) changes its electronic properties. By means of UV photofragment spectroscopy of cold ions, it was found that the photoexcitation of the CytAg(+) complex at low energy (315-282) nm efficiently leads to ionized cytosine (Cyt(+)) as the single product. This occurs through a charge transfer state in which an electron from the p orbital of Cyt is promoted to Ag(+), as confirmed by ab initio calculations at the TD-DFT/B3LYP and RI-ADC(2) theory level using the SV(P) basis set. The low ionization energy of Cyt in the presence of Ag(+) could have important implications as point mutation of DNA upon sunlight exposition.


Asunto(s)
Citosina/química , ADN/química , Metales/química , Plata/química , ADN/efectos de la radiación , Electrones , Mutación Puntual/efectos de la radiación , Teoría Cuántica , Luz Solar/efectos adversos , Termodinámica
16.
Phys Chem Chem Phys ; 16(22): 10643-50, 2014 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-24752466

RESUMEN

The very fast relaxation of the excited states to the ground state in DNA/RNA bases is a necessary process to ensure the photostability of DNA and its rate is highly sensitive to the tautomeric form of the bases. Protonation of the bases plays a crucial role in many biochemical and mutagenic processes and it can result in alternative tautomeric structures, thus making important the knowledge of the properties of protonated DNA/RNA bases. We report here the photofragmentation spectra of the five protonated DNA/RNA bases. In most of the cases, the spectra exhibit well resolved vibrational structures, with broad bands associated with very short excited state lifetimes. The similarity between the electronic properties, e.g. excitation energy and very short excited state lifetimes for the canonical tautomers of protonated and neutral DNA bases, suggests that the former could also play an important role in the photostability mechanism of DNA.


Asunto(s)
ADN/química , Protones , Teoría Cuántica , ARN/química
17.
Phys Chem Chem Phys ; 16(11): 5250-9, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24492247

RESUMEN

The electronic spectra of cold protonated aromatic amines: anilineH(+) C6H5-NH3(+), benzylamineH(+) C6H5-CH2-NH3(+) and phenylethylamineH(+) C6H5-(CH2)2-NH3(+) have been investigated experimentally in a large spectral domain and are compared to those of their hydroxyl homologues. In the low energy region, the electronic spectra are similar to their neutral analogues, which reveals the ππ* character of their first excited state. A second transition is observed from 0.4 to 1 eV above the origin band, which is assigned to the excitation of the πσ* state. In these protonated amine molecules, there is a competition between different fragmentation channels, some being specific to UV excitation i.e., not observed in low-energy collision induced dissociation experiments. Besides, for one amine a drastic change in the fragmentation branching ratio is observed within a very short energy range that reveals the complex excited state dynamics and fragmentation processes. The experimental observations can be rationalized using a simple qualitative model, the ππ*-πσ* model [A. L. Sobolewski, W. Domcke, C. Dedonder-Lardeux and C. Jouvet, Phys. Chem. Chem. Phys., 2002, 4, 1093-1100], which predicts that the excited state dynamics is controlled by the crossing between the ππ* excited state and a πσ* state repulsive along the XH (X being O or N) coordinate.

18.
J Phys Chem A ; 118(11): 2056-62, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24571346

RESUMEN

The gas phase structure of 2-aminophenol has been investigated using UV-UV as well as IR-UV hole burning spectroscopy. The presence of a free OH vibration in the IR spectrum rules out the contribution of the cis isomer, which is expected to have an intramolecular H-bond, to the spectra. The excited state lifetimes of different vibronic levels have been measured with pump-probe picosecond experiments and are all very short (35 ± 5) ps as compared to other substituted phenols. The electronic states and active vibrational modes of the cis and trans isomers have been calculated with ab initio methods for comparison with the experimental spectra. The Franck-Condon simulation of the spectrum using the calculated ground and excited state frequencies of the trans isomer is in good agreement with the experimental one. The very short excited state lifetime of 2-aminophenol can then be explained by the strong coupling between the two first singlet excited states due to the absence of symmetry, the geometry of the trans isomer being strongly nonplanar in the excited state.

19.
J Chem Phys ; 140(2): 024302, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24437872

RESUMEN

The electronic spectra of cold benzylium (C6H5-CH2 (+)) and 1-phenylethyl (C6H5-CH-CH3 (+)) cations have been recorded via photofragment spectroscopy. Benzylium and 1-phenylethyl cations produced from electrosprayed benzylamine and phenylethylamine solutions, respectively, were stored in a cryogenically cooled quadrupole ion trap and photodissociated by an OPO laser, scanned in parts of the UV and visible regions (600-225 nm). The electronic states and active vibrational modes of the benzylium and 1-phenylethyl cations as well as those of their tropylium or methyl tropylium isomers have been calculated with ab initio methods for comparison with the spectra observed. Sharp vibrational progressions are observed in the visible region while the absorption features are much broader in the UV. The visible spectrum of the benzylium cation is similar to that obtained in an argon tagging experiment [V. Dryza, N. Chalyavi, J. A. Sanelli, and E. J. Bieske, J. Chem. Phys. 137, 204304 (2012)], with an additional splitting assigned to Fermi resonances. The visible spectrum of the 1-phenylethyl cation also shows vibrational progressions. For both cations, the second electronic transition is observed in the UV, around 33,000 cm(-1) (4.1 eV) and shows a broadened vibrational progression. In both cases the S2 optimized geometry is non-planar. The third electronic transition observed around 40,000 cm(-1) (5.0 eV) is even broader with no apparent vibrational structures, which is indicative of either a fast non-radiative process or a very large change in geometry between the excited and the ground states. The oscillator strengths calculated for tropylium and methyl tropylium are weak. Therefore, these isomeric structures are most likely not responsible for these absorption features. Finally, the fragmentation pattern changes in the second and third electronic states: C2H2 loss becomes predominant at higher excitation energies, for both cations.

20.
J Chem Phys ; 138(5): 054304, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23406116

RESUMEN

The excited state dynamics of the H-bonded 7-azaindole-phenol complex (7AI-PhOH) has been studied by combination of picosecond pump and probe experiments, LIF measurements on the nanosecond time scale and ab initio calculations. A very short S(1) excited state lifetime (30 ps) has been measured for the complex upon excitation of the 0(0)(0) transition and the lifetime remains unchanged when the ν(6) vibrational mode (0(0)(0) + 127 cm(-1)) is excited. In addition, no UV-visible fluorescence was observed by exciting the complex with nanosecond pulses. Two possible deactivation channels have been investigated by ab initio calculations: first an excited state tautomerization assisted by a concerted double proton transfer (CDPT) and second an excited state concerted proton electron transfer (CPET) that leads to the formation of a radical pair (hydrogenated 7AIH(●) radical and phenoxy PhO(●) radical). Both channels, CDPT and CPET, seem to be opened according to the ab initio calculations. However, the analysis of the ensemble of experimental and theoretical evidence indicates that the excited state tautomerization assisted by CDPT is quite unlikely to be responsible for the fast S(1) state deactivation. In contrast, the CPET mechanism is suggested to be the non-radiative process deactivating the S(1) state of the complex. In this mechanism, the lengthening of the OH distance of the PhOH molecule induces an electron transfer from PhOH to 7AI that is followed by a proton transfer in the same kinetic step. This process leads to the formation of the radical pair (7AIH(●)···PhO(●)) in the electronically excited state through a very low barrier or to the ion pair (7AIH(+)···PhO(-)) in the ground state. Moreover, it should be noted that, according to the calculations the πσ* state, which is responsible for the H loss in the free PhOH molecule, does not seem to be involved at all in the quenching process of the 7AI-PhOH complex.


Asunto(s)
Indoles/química , Fenoles/química , Teoría Cuántica , Enlace de Hidrógeno , Indoles/aislamiento & purificación , Cinética , Fenoles/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA