Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nat Immunol ; 21(5): 555-566, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32327756

RESUMEN

Regulatory myeloid immune cells, such as myeloid-derived suppressor cells (MDSCs), populate inflamed or cancerous tissue and block immune cell effector functions. The lack of mechanistic insight into MDSC suppressive activity and a marker for their identification has hampered attempts to overcome T cell inhibition and unleash anti-cancer immunity. Here, we report that human MDSCs were characterized by strongly reduced metabolism and conferred this compromised metabolic state to CD8+ T cells, thereby paralyzing their effector functions. We identified accumulation of the dicarbonyl radical methylglyoxal, generated by semicarbazide-sensitive amine oxidase, to cause the metabolic phenotype of MDSCs and MDSC-mediated paralysis of CD8+ T cells. In a murine cancer model, neutralization of dicarbonyl activity overcame MDSC-mediated T cell suppression and, together with checkpoint inhibition, improved the efficacy of cancer immune therapy. Our results identify the dicarbonyl methylglyoxal as a marker metabolite for MDSCs that mediates T cell paralysis and can serve as a target to improve cancer immune therapy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunoterapia/métodos , Melanoma/inmunología , Células Supresoras de Origen Mieloide/inmunología , Piruvaldehído/metabolismo , Amina Oxidasa (conteniendo Cobre)/metabolismo , Animales , Linfocitos T CD8-positivos/trasplante , Comunicación Celular , Proliferación Celular , Humanos , Tolerancia Inmunológica , Activación de Linfocitos , Melanoma Experimental , Ratones , Ratones Transgénicos , Neoplasias Experimentales , Receptor de Muerte Celular Programada 1/metabolismo
2.
Nature ; 592(7854): 444-449, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33762736

RESUMEN

Nonalcoholic steatohepatitis (NASH) is a manifestation of systemic metabolic disease related to obesity, and causes liver disease and cancer1,2. The accumulation of metabolites leads to cell stress and inflammation in the liver3, but mechanistic understandings of liver damage in NASH are incomplete. Here, using a preclinical mouse model that displays key features of human NASH (hereafter, NASH mice), we found an indispensable role for T cells in liver immunopathology. We detected the hepatic accumulation of CD8 T cells with phenotypes that combined tissue residency (CXCR6) with effector (granzyme) and exhaustion (PD1) characteristics. Liver CXCR6+ CD8 T cells were characterized by low activity of the FOXO1 transcription factor, and were abundant in NASH mice and in patients with NASH. Mechanistically, IL-15 induced FOXO1 downregulation and CXCR6 upregulation, which together rendered liver-resident CXCR6+ CD8 T cells susceptible to metabolic stimuli (including acetate and extracellular ATP) and collectively triggered auto-aggression. CXCR6+ CD8 T cells from the livers of NASH mice or of patients with NASH had similar transcriptional signatures, and showed auto-aggressive killing of cells in an MHC-class-I-independent fashion after signalling through P2X7 purinergic receptors. This killing by auto-aggressive CD8 T cells fundamentally differed from that by antigen-specific cells, which mechanistically distinguishes auto-aggressive and protective T cell immunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Hígado/inmunología , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/patología , Receptores CXCR6/inmunología , Acetatos/farmacología , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/patología , Muerte Celular/efectos de los fármacos , Muerte Celular/inmunología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Humanos , Interleucina-15/inmunología , Interleucina-15/farmacología , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL
3.
J Hepatol ; 78(4): 820-835, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36681162

RESUMEN

BACKGROUND & AIMS: Hepatocyte growth and proliferation depends on membrane phospholipid biosynthesis. Short-chain fatty acids (SCFAs) generated by bacterial fermentation, delivered through the gut-liver axis, significantly contribute to lipid biosynthesis. We therefore hypothesized that dysbiotic insults like antibiotic treatment not only affect gut microbiota, but also impair hepatic lipid synthesis and liver regeneration. METHODS: Stable isotope labeling and 70% partial hepatectomy (PHx) was carried out in C57Bl/6J wild-type mice, in mice treated with broad-spectrum antibiotics, in germ-free mice and mice colonized with minimal microbiota. The microbiome was analyzed by 16S rRNA gene sequencing and microbial culture. Gut content, liver, blood and primary hepatocyte organoids were tested by mass spectrometry-based lipidomics, quantitative reverse-transcription PCR (qRT-PCR), immunoblot and immunohistochemistry for expression of proliferative and lipogenic markers. Matched biopsies from hyperplastic and hypoplastic liver tissue of patients subjected to surgical intervention to induce hyperplasia were analyzed by qRT-PCR for lipogenic enzymes. RESULTS: Three days of antibiotic treatment induced persistent dysbiosis with significantly decreased beta-diversity and richness, but a massive increase of Proteobacteria, accompanied by decreased colonic SCFAs. After PHx, antibiotic-treated mice showed delayed liver regeneration, increased mortality, impaired hepatocyte proliferation and decreased hepatic phospholipid synthesis. Expression of the lipogenic enzyme SCD1 was upregulated after PHx but delayed by antibiotic treatment. Germ-free mice essentially recapitulated the phenotype of antibiotic treatment. Phospholipid biosynthesis, hepatocyte proliferation, liver regeneration and survival were rescued in gnotobiotic mice colonized with a minimal SCFA-producing microbial community. SCFAs induced the growth of murine hepatocyte organoids and hepatic SCD1 expression in mice. Further, SCD1 was required for proliferation of human hepatoma cells and was associated with liver regeneration in human patients. CONCLUSION: Gut microbiota are pivotal for hepatic membrane phospholipid biosynthesis and liver regeneration. IMPACT AND IMPLICATIONS: Gut microbiota affect hepatic lipid metabolism through the gut-liver axis, but the underlying mechanisms are poorly understood. Perturbations of the gut microbiome, e.g. by antibiotics, impair the production of bacterial metabolites, which normally serve as building blocks for membrane lipids in liver cells. As a consequence, liver regeneration and survival after liver surgery is severely impaired. Even though this study is preclinical, its results might allow physicians in the future to improve patient outcomes after liver surgery, by modulation of gut microbiota or their metabolites.


Asunto(s)
Membrana Celular , Microbioma Gastrointestinal , Hepatocitos , Regeneración Hepática , Fosfolípidos , Animales , Humanos , Ratones , Antibacterianos/farmacología , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Hiperplasia/metabolismo , Hiperplasia/patología , Hígado/patología , Regeneración Hepática/fisiología , Ratones Endogámicos C57BL , Fosfolípidos/biosíntesis , Fosfolípidos/metabolismo , ARN Ribosómico 16S , Hepatocitos/metabolismo , Membrana Celular/metabolismo
5.
HPB (Oxford) ; 24(8): 1362-1364, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35289281

RESUMEN

BACKGROUND: The first-line therapy for liver malignancies is a radical extended liver resection. This high-risk operation has a high incidence of post-hepatectomy liver failure (PHLF) due to a small future liver remnant (FLR). One of the procedures to increase the FLR is the associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) which is still associated with high morbidity and mortality. Here, we present a new, less invasive ALPPS variant that may be associated with lower morbidity. METHODS: SoftALPPS is characterized by reduced trauma to the liver tissue and individual adaptation to the patient's health constitution. In softALPPS, portal vein embolization (PVE) is performed instead of portal vein ligation (PVL) after complete recovery of liver function. In addition, a non-absorbable foil was avoided in order to be able to extend the interval to step two or skip step two when required. RESULTS: Four patients successfully underwent softALPPS. Two of these patients have been followed-up for over a year (one patient with Klatskin tumor, one patient with extensive HCC). Both patients show no evidence of recurrence after 12 months and are in good medical condition. The other two patients who recently had surgery are also doing well. CONCLUSION: SoftALPPS offers the chance to curatively resect patients with high tumor burden of the liver even when the FLR is inadequate. This individual therapy method can give patients the possibility of complete tumor resection and can help to reduce perioperative morbidity.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/cirugía , Hepatectomía , Humanos , Ligadura/métodos , Hígado/patología , Vena Porta/patología , Vena Porta/cirugía , Resultado del Tratamiento
6.
FASEB J ; 34(8): 10387-10397, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32539223

RESUMEN

TLR3 is implicated in anti-viral immune responses, but may also act as a sensor of tissue damage in the absence of infection. Here, we provide evidence for an essential role of TLR3 in liver regeneration after an acute loss of tissue due to partial hepatectomy. Mice lacking TLR3 had a severe and sustained defect in the restoration of liver tissue with reduced liver-to-body weight ratios even after an extended recovery period of 2 weeks. Hepatocyte cell cycle progression into S phase was impaired in TLR3-deficient mice. Mechanistic analyses revealed that TLR3-deficient mice had markedly reduced systemic levels of active HGF, but had increased amounts of inactive tissue-bound HGF. Importantly, expression of uPA, which orchestrates the processing and release of HGF from the hepatic extracellular matrix, was reduced in regenerating livers of TLR3-deficient mice. In addition, expression of the HGF maturation factor HGFAC was transiently diminished in TLR3-deficient mice. In vitro, engagement of TLR3 directly stimulated expression of uPA by hepatic stellate cells. Thus, TLR3 supports liver regeneration through upregulation of uPA, which promotes the release of preformed HGF from extracellular matrix stores.


Asunto(s)
Proliferación Celular/fisiología , Factor de Crecimiento de Hepatocito/metabolismo , Hepatocitos/metabolismo , Receptor Toll-Like 3/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Animales , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Hepatectomía/métodos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/fisiología , Hígado/metabolismo , Regeneración Hepática/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Organogénesis/fisiología
7.
FASEB J ; 34(6): 8125-8138, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32329113

RESUMEN

The effectiveness of liver regeneration limits surgical therapies of hepatic disorders and determines patient outcome. Here, we investigated the role of the neuropeptide calcitonin gene-related peptide (CGRP) for liver regeneration after acute or chronic injury. Mice deficient for the CGRP receptor component receptor activity-modifying protein 1 (RAMP1) were subjected to a 70% partial hepatectomy or repeated intraperitoneal injections of carbon tetrachloride. RAMP1 deficiency severely impaired recovery of organ mass and hepatocyte proliferation after both acute and chronic liver injury. Mechanistically, protein expression of the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) was decreased in regenerating livers of RAMP1-deficient mice. Lack of RAMP1 was associated with hyperphosphorylation of YAP on Ser127 and Ser397, which regulates YAP functional activity and protein levels. Consequently, expression of various YAP-controlled cell cycle regulators and hepatocyte proliferation were severely reduced in the absence of RAMP1. In vitro, CGRP treatment caused increased YAP protein expression and a concomitant decline of YAP phosphorylation in liver tissue slice cultures of mouse and human origin and in primary human hepatocytes. Thus, our results indicate that sensory nerves represent a crucial control element of liver regeneration after acute and chronic injury acting through the CGRP-RAMP1 pathway, which stimulates YAP/TAZ expression and activity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regeneración Hepática/fisiología , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Ciclo Celular/fisiología , Proliferación Celular/fisiología , Hepatectomía/métodos , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Hepatopatías/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación/fisiología , Transducción de Señal/fisiología , Proteínas Señalizadoras YAP
8.
Int J Cancer ; 147(6): 1715-1731, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32147820

RESUMEN

Epithelial-mesenchymal transition (EMT) is a cell plasticity process required for metastasis and chemoresistance of carcinoma cells. We report a crucial role of the signal adaptor proteins CRK and CRKL in promoting EMT and tumor aggressiveness, as well as resistance against chemotherapy in colorectal and pancreatic carcinoma. Genetic loss of either CRKL or CRK partially counteracted EMT in three independent cancer cell lines. Strikingly, complete loss of the CRK family shifted cells strongly toward the epithelial phenotype. Cells exhibited greatly increased E-cadherin and grew as large, densely packed clusters, completely lacked invasiveness and the ability to undergo EMT induced by cytokines or genetic activation of SRC. Furthermore, CRK family-deficiency significantly reduced cell survival, proliferation and chemoresistance, as well as ERK1/2 phosphorylation and c-MYC protein levels. In accordance, MYC-target gene expression was identified as novel hallmark process positively regulated by CRK family proteins. Mechanistically, CRK proteins were identified as pivotal amplifiers of SRC/FAK signaling at focal adhesions, mediated through a novel positive feedback loop depending on RAP1. Expression of the CRK family and the EMT regulator ZEB1 was significantly correlated in samples from colorectal cancer patients, especially in invasive regions. Further, high expression of CRK family genes was significantly associated with reduced survival in locally advanced colorectal cancer, as well as in pan-cancer datasets from the TCGA project. Thus, CRK family adaptor proteins are promising therapeutic targets to counteract EMT, chemoresistance, metastasis formation and minimal residual disease. As proof of concept, CRK family-mediated oncogenic signaling was successfully inhibited by a peptide-based inhibitor.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/fisiología , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-crk/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Anciano , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Colon/patología , Colon/cirugía , Neoplasias Colorrectales/terapia , Conjuntos de Datos como Asunto , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Quinasa 1 de Adhesión Focal/metabolismo , Adhesiones Focales/patología , Humanos , Masculino , Invasividad Neoplásica/patología , Invasividad Neoplásica/prevención & control , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-crk/antagonistas & inhibidores , RNA-Seq , Recto/patología , Recto/cirugía , Transducción de Señal/efectos de los fármacos , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Familia-src Quinasas/metabolismo
9.
J Hepatol ; 73(6): 1347-1359, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32598967

RESUMEN

BACKGROUND & AIMS: Selective elimination of virus-infected hepatocytes occurs through virus-specific CD8 T cells recognizing peptide-loaded MHC molecules. Herein, we report that virus-infected hepatocytes are also selectively eliminated through a cell-autonomous mechanism. METHODS: We generated recombinant adenoviruses and genetically modified mouse models to identify the molecular mechanisms determining TNF-induced hepatocyte apoptosis in vivo and used in vivo bioluminescence imaging, immunohistochemistry, immunoblot analysis, RNAseq/proteome/phosphoproteome analyses, bioinformatic analyses, mitochondrial function tests. RESULTS: We found that TNF precisely eliminated only virus-infected hepatocytes independently of local inflammation and activation of immune sensory receptors. TNF receptor I was equally relevant for NF-kB activation in healthy and infected hepatocytes, but selectively mediated apoptosis in infected hepatocytes. Caspase 8 activation downstream of TNF receptor signaling was dispensable for apoptosis in virus-infected hepatocytes, indicating an unknown non-canonical cell-intrinsic pathway promoting apoptosis in hepatocytes. We identified a unique state of mitochondrial vulnerability in virus-infected hepatocytes as the cause for this non-canonical induction of apoptosis through TNF. Mitochondria from virus-infected hepatocytes showed normal biophysical and bioenergetic functions but were characterized by reduced resilience to calcium challenge. In the presence of unchanged TNF-induced signaling, reactive oxygen species-mediated calcium release from the endoplasmic reticulum caused mitochondrial permeability transition and apoptosis, which identified a link between extrinsic death receptor signaling and cell-intrinsic mitochondrial-mediated caspase activation. CONCLUSION: Our findings reveal a novel concept in immune surveillance by identifying a cell-autonomous defense mechanism that selectively eliminates virus-infected hepatocytes through mitochondrial permeability transition. LAY SUMMARY: The liver is known for its unique immune functions. Herein, we identify a novel mechanism by which virus-infected hepatocytes can selectively eliminate themselves through reduced mitochondrial resilience to calcium challenge.


Asunto(s)
Caspasa 8/metabolismo , Hepatocitos , Mitocondrias Hepáticas , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Animales , Apoptosis/inmunología , Señalización del Calcio , Células Cultivadas , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Ratones , Mitocondrias Hepáticas/inmunología , Mitocondrias Hepáticas/metabolismo , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
10.
Gut ; 65(6): 1001-14, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26762195

RESUMEN

OBJECTIVE: The impact of glia cells during GI carcinogenesis and in cancer pain is unknown. Here, we demonstrate a novel mechanism how Schwann cells (SCs) become activated in the pancreatic cancer (PCa) microenvironment and influence spinal activity and pain sensation. DESIGN: Human SCs were exposed to hypoxia, to pancreatic cancer cells (PCCs) and/or to T-lymphocytes. Both SC and intrapancreatic nerves of patients with PCa with known pain severity were assessed for glial intermediate filament and hypoxia marker expression, proliferation and for transcriptional alterations of pain-related targets. In conditional PCa mouse models with selective in vivo blockade of interleukin (IL)-6 signalling (Ptf1a-Cre;LSL-Kras(G12D)/KC interbred with IL6(-/-) or sgp130(tg) mice), SC reactivity, abdominal mechanosensitivity and spinal glial/neuronal activity were quantified. RESULTS: Tumour hypoxia, PCC and/or T-lymphocytes activated SC via IL-6-signalling in vitro. Blockade of the IL-6-signalling suppressed SC activation around PCa precursor lesions (pancreatic intraepithelial neoplasia (PanIN)) in KC;IL6(-/-) (32.06%±5.25% of PanINs) and KC;sgp130(tg) (55.84%±5.51%) mouse models compared with KC mice (78.27%±3.91%). Activated SCs were associated with less pain in human PCa and with decreased abdominal mechanosensitivity in KC mice (von Frey score of KC: 3.9±0.5 vs KC;IL6(-/-) mice: 5.9±0.9; and KC;sgp130(tg): 10.21±1.4) parallel to attenuation of spinal astroglial and/or microglial activity. Activated SC exhibited a transcriptomic profile with anti-inflammatory and anti-nociceptive features. CONCLUSIONS: Activated SC in PCa recapitulate the hallmarks of 'reactive gliosis' and contribute to analgesia due to suppression of spinal glia. Our findings propose a mechanism for how cancer might remain pain-free via the SC-central glia interplay during cancer progression.


Asunto(s)
Analgesia , Astrocitos , Microglía , Neoplasias Pancreáticas/genética , Células de Schwann/metabolismo , Hipoxia Tumoral/genética , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Humanos , Técnicas In Vitro , Interleucina-6/genética , Ratones , Ratones Transgénicos , Microglía/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Linfocitos T/metabolismo
11.
J Immunol ; 188(9): 4590-601, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22450813

RESUMEN

Recently, the mammalian actin-binding protein 1 (mAbp1; Hip-55, SH3P7, debrin-like protein) was identified as a novel component of the ß(2) integrin-mediated signaling cascade during complement-mediated phagocytosis and firm adhesion of polymorphonuclear neutrophils (PMN) under physiological shear stress conditions. In this study, we found that the genetic ablation of mAbp1 severely compromised not only the induction of adhesion, but also subsequent spreading of leukocytes to the endothelium as assessed by intravital microscopy of inflamed vessels of the cremaster muscle of mice. In vitro studies using murine PMN confirmed that mAbp1 was required for ß(2) integrin-mediated spreading under shear stress conditions, whereas mAbp1 was dispensable for spreading under static conditions. Upon ß(2) integrin-mediated adhesion and chemotactic migration of human neutrophil-like differentiated HL-60 cells, mAbp1 was enriched at the leading edge of the polarized cell. Total internal reflection fluorescence microscopy revealed that mAbp1 formed propagating waves toward the front of the lamellipodium, which are characteristic for dynamic reorganization of the cytoskeleton. Accordingly, binding of mAbp1 to actin was increased upon ß(2) integrin-mediated adhesion, as shown by coimmunoprecipitation experiments. However, chemotactic migration under static conditions was unaffected in the absence of mAbp1. In contrast, the downregulation of mAbp1 by RNA interference technique in neutrophil-like differentiated HL-60 cells or the genetic ablation of mAbp1 in leukocytes led to defective migration under flow conditions in vitro and in inflamed cremaster muscle venules in the situation in vivo. In conclusion, mAbp1 is of fundamental importance for spreading and migration under shear stress conditions, which are critical prerequisites for efficient PMN extravasation during inflammation.


Asunto(s)
Movimiento Celular/inmunología , Endotelio Vascular/inmunología , Proteínas de Microfilamentos/inmunología , Neutrófilos/inmunología , Seudópodos/inmunología , Dominios Homologos src/inmunología , Animales , Antígenos CD18/genética , Antígenos CD18/inmunología , Antígenos CD18/metabolismo , Adhesión Celular/genética , Adhesión Celular/inmunología , Movimiento Celular/genética , Regulación hacia Abajo/genética , Regulación hacia Abajo/inmunología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Células HL-60 , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neutrófilos/metabolismo , Seudópodos/genética , Seudópodos/metabolismo , Seudópodos/patología , Interferencia de ARN , Resistencia al Corte , Dominios Homologos src/genética
12.
J Clin Invest ; 133(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37607005

RESUMEN

Solid cancers like pancreatic ductal adenocarcinoma (PDAC), a type of pancreatic cancer, frequently exploit nerves for rapid dissemination. This neural invasion (NI) is an independent prognostic factor in PDAC, but insufficiently modeled in genetically engineered mouse models (GEMM) of PDAC. Here, we systematically screened for human-like NI in Europe's largest repository of GEMM of PDAC, comprising 295 different genotypes. This phenotype screen uncovered 2 GEMMs of PDAC with human-like NI, which are both characterized by pancreas-specific overexpression of transforming growth factor α (TGF-α) and conditional depletion of p53. Mechanistically, cancer-cell-derived TGF-α upregulated CCL2 secretion from sensory neurons, which induced hyperphosphorylation of the cytoskeletal protein paxillin via CCR4 on cancer cells. This activated the cancer migration machinery and filopodia formation toward neurons. Disrupting CCR4 or paxillin activity limited NI and dampened tumor size and tumor innervation. In human PDAC, phospho-paxillin and TGF-α-expression constituted strong prognostic factors. Therefore, we believe that the TGF-α-CCL2-CCR4-p-paxillin axis is a clinically actionable target for constraining NI and tumor progression in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Factor de Crecimiento Transformador alfa/genética , Factor de Crecimiento Transformador alfa/metabolismo , Paxillin/genética , Paxillin/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/metabolismo , Fenotipo , Línea Celular Tumoral , Neoplasias Pancreáticas
13.
Blood ; 116(11): 1885-94, 2010 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-20530790

RESUMEN

A key event in the successful induction of adaptive immune responses is the antigen-specific activation of T cells by dendritic cells (DCs). Although LFA-1 (lymphocyte function-associated antigen 1) on T cells is considered to be important for antigen-specific T-cell activation, the role for LFA-1 on DCs remains elusive. Using 2 different approaches to activate LFA-1 on DCs, either by deletion of the αL-integrin cytoplasmic GFFKR sequence or by silencing cytohesin-1-interacting protein, we now provide evidence that DCs are able to make use of active LFA-1 and can thereby control the contact duration with naive T cells. Enhanced duration of DC/T-cell interaction correlates inversely with antigen-specific T-cell proliferation, generation of T-helper 1 cells, and immune responses leading to delayed-type hypersensitivity. We could revert normal interaction time and T-cell proliferation to wild-type levels by inhibition of active LFA-1 on DCs. Our data further suggest that cytohesin-1-interacting protein might be responsible for controlling LFA-1 deactivation on mature DCs. In summary, our findings indicate that LFA-1 on DCs needs to be in an inactive state to ensure optimal T-cell activation and suggest that regulation of LFA-1 activity allows DCs to actively control antigen-driven T-cell proliferation and effective immune responses.


Asunto(s)
Comunicación Celular/inmunología , Células Dendríticas/inmunología , Antígeno-1 Asociado a Función de Linfocito/inmunología , Linfocitos T/inmunología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Adhesión Celular/inmunología , Proliferación Celular , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/metabolismo , Citometría de Flujo , Hipersensibilidad Tardía/inmunología , Hipersensibilidad Tardía/metabolismo , Molécula 1 de Adhesión Intercelular/inmunología , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Activación de Linfocitos/inmunología , Antígeno-1 Asociado a Función de Linfocito/genética , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Interferencia de ARN , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/citología , Linfocitos T/metabolismo , Células TH1/citología , Células TH1/inmunología , Células TH1/metabolismo , Factores de Tiempo
14.
JHEP Rep ; 4(5): 100465, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35462860

RESUMEN

Background & Aims: Increased sensitivity towards tumor necrosis factor (TNF)-induced cell death in virus-infected hepatocytes has revealed a so far unrecognized hepatocyte-intrinsic antiviral immune surveillance mechanism, for which no in vitro or ex vivo model is available. We aimed to establish precision-cut liver slices (PCLS) as a model system to study hepatocyte-intrinsic regulation of apoptosis. Methods: Preparation of PCLS from mouse and human liver tissue was optimized for minimal procedure-associated apoptosis. Functionality of liver cells in PCLS was characterized using extracellular flux analysis to determine mitochondrial respiration, and viral infection with recombinant adenovirus and lymphocytic choriomeningitis virus (LCMV) was used to probe for hepatocyte-intrinsic sensitivity towards apoptosis in PCLS. Apoptosis was detected by immunohistochemical staining for cleaved-caspase 3 and quantified by detection of effector caspase activity in PCLS. Results: We established an optimized protocol for preparation of PCLS from human and mouse models using agarose-embedding of liver tissue to improve precision cutting and using organ-protective buffer solutions to minimize procedure-associated cell death. PCLS prepared from virus-infected livers showed preserved functional metabolic properties. Importantly, in PCLS from adenovirus- and LCMV-infected livers we detected increased induction of apoptosis after TNF challenge ex vivo. Conclusion: We conclude that PCLS can be used as model system to ex vivo characterize hepatocyte-intrinsic sensitivity to cell death. This may also enable researchers to characterize human hepatocyte sensitivity to apoptosis in PCLS prepared from patients with acute or chronic liver diseases. Lay summary: Virus-infected hepatocytes in vivo show an increased sensitivity towards induction of cell death signaling through the TNF receptor. Studying this hepatocyte-intrinsic antiviral immune surveillance mechanism has been hampered by the absence of model systems that reciprocate the in vivo finding of increased apoptosis of virus-infected hepatocytes challenged with TNF. Herein, we report that an optimized protocol for generation of precision-cut liver slices can be used to study this hepatocyte-intrinsic surveillance mechanism ex vivo.

15.
J Exp Med ; 201(12): 1987-98, 2005 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-15955836

RESUMEN

The dynamic regulation of ligand binding is considered crucial for integrin function. However, the importance of activity regulation for integrin function in vivo is largely unknown. Here, we have applied gene targeting to delete the GFFKR sequence of the lymphocyte function-associated antigen-1 (LFA-1) alpha(L) subunit cytoplasmic domain in mouse germline. Lymphocytes from Lfa-1(d/d) mutant mice showed constitutive activation of LFA-1-mediated cell adhesion and impaired de-adhesion from intercellular adhesion molecule-1 that resulted in defective cell migration. In contrast, signaling through LFA-1 was not affected in Lfa-1(d/d) cells. T cell activation by superantigen-loaded and allogeneic APCs, cytotoxic T cell activity, T-dependent humoral immune responses, and neutrophil recruitment during aseptic peritonitis were impaired in Lfa-1(d/d) mice. Thus, deactivation of LFA-1 and disassembly of LFA-1-mediated cell contacts seem to be vital for the generation of normal immune responses.


Asunto(s)
Formación de Anticuerpos/inmunología , Adhesión Celular/inmunología , Inmunidad Celular/inmunología , Antígeno-1 Asociado a Función de Linfocito/inmunología , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Subunidades de Proteína/metabolismo , Animales , Anticuerpos/inmunología , Cromosomas Artificiales Bacterianos , Cartilla de ADN , Marcación de Gen , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Sistema Linfático/fisiología , Antígeno-1 Asociado a Función de Linfocito/genética , Ratones , Microscopía por Video , Mutación/genética , Organogénesis/genética , Organogénesis/fisiología , Reacción en Cadena de la Polimerasa , Estructura Terciaria de Proteína , Subunidades de Proteína/inmunología
16.
Int Immunol ; 22(1): 35-44, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19946016

RESUMEN

Leucocyte function-associated antigen-1 (LFA-1) is known to be involved in immune reactions leading to allograft rejection. The role of deactivating LFA-1 in this context has not been investigated yet, although it is accepted that regulating LFA-1 activity is essential for T-cell function. Expressing LFA-1 locked in an active state in mice (LFA-1(d/d)) allowed us to investigate the in vivo function of LFA-1 deactivation for allograft rejection in a model of heterotopic cardiac transplantation. We provide in vivo evidence that regulating LFA-1 activity from an active to an inactive state controls antigen-specific priming and proliferation of T cells in response to allogeneic stimuli. Consequently, defective LFA-1 deactivation significantly prolonged cardiac allograft survival. Furthermore, reduced numbers of alloantigen-specific T cells and non-allo-specific innate immune cells within allografts of LFA-1(d/d) recipients indicate that expression of active LFA-1 impairs inflammatory responses involving all major leucocyte subpopulations. Taken together, our in vivo data suggest that LFA-1 deactivation is important for the formation of inflammatory lesions and rejection of cardiac allografts. Thus, the dynamic regulation of LFA-1 activity, rather than the mere presence of LFA-1, appears to contribute to the control of immune reactions inducing allogeneic transplant rejection.


Asunto(s)
Rechazo de Injerto/inmunología , Trasplante de Corazón , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Linfocitos T/metabolismo , Animales , Movimiento Celular/genética , Movimiento Celular/inmunología , Proliferación Celular , Rechazo de Injerto/genética , Rechazo de Injerto/metabolismo , Rechazo de Injerto/patología , Supervivencia de Injerto/genética , Supervivencia de Injerto/inmunología , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Antígeno-1 Asociado a Función de Linfocito/genética , Antígeno-1 Asociado a Función de Linfocito/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Linfocitos T/inmunología , Linfocitos T/patología
17.
BMC Cancer ; 9: 463, 2009 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-20035626

RESUMEN

BACKGROUND: Costimulatory signaling has been implicated as a potential regulator of antitumor immunity in various human cancers. In contrast to the negative prognostic value of aberrant B7-H1 expression by pancreatic cancer cells, the role of B7-H3 is still unknown. Therefore, we investigated the expression pattern and clinical significance of B7-H3 expression in human pancreatic cancer. METHODS: B7-H3 expression was evaluated by immunohistochemistry in 68 patients with pancreatic cancer who underwent surgical tumor resection. Expression data was correlated with clinicopathologic features and with the number of tumor-infiltrating T cells. RESULTS: B7-H3 expression was significantly upregulated in pancreatic cancer compared to normal pancreas (p < 0.05). In 60 of 68 examined tumors B7-H3 protein was detectable in pancreatic cancer cells. Patients with high tumor B7-H3 levels had a significantly better postoperative prognosis than patients with low tumor B7-H3 levels (p = 0.0067). Furthermore, tumor B7-H3 expression significantly correlated with the number of tumor-infiltrating CD8+ T cells (p = 0.018). CONCLUSION: We demonstrate for the first time that B7-H3 is abundantly expressed in pancreatic cancer and that tumor-associated B7-H3 expression significantly correlates with prolonged postoperative survival. Our findings suggest that B7-H3 might play an important role as a potential stimulator of antitumor immune response in pancreatic cancer.


Asunto(s)
Antígenos CD/genética , Carcinoma/mortalidad , Neoplasias Pancreáticas/mortalidad , Receptores Inmunológicos/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antígenos CD/metabolismo , Antígenos B7 , Carcinoma/diagnóstico , Carcinoma/genética , Carcinoma/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Receptores Inmunológicos/metabolismo , Análisis de Supervivencia , Células Tumorales Cultivadas , Adulto Joven
18.
Hum Gene Ther ; 30(1): 44-56, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29916265

RESUMEN

Muscle-invasive bladder cancer represents approximately 25% of diagnosed bladder cancer cases and carries a significant risk of death. Oncolytic viruses are novel antitumor agents with the ability to selectively replicate and lyse tumor cells while sparing healthy tissue. We explored the efficiency of the oncolytic YB-1-selective adenovirus XVir-N-31 in vitro and in an orthotopic mouse model for bladder cancer by intramural injection under ultrasound guidance. We demonstrated that XVir-N-31 replicated in bladder cancer cells and induced a stronger immunogenic cell death than wild-type adenovirus by facilitating enhanced release of HMGB1 and exosomal Hsp70. The intratumoral delivery of XVir-N-31 by ultrasound guidance delayed tumor growth in an immunodeficient model, demonstrating the feasibility of this approach to deliver oncolytic viruses directly into the tumor.


Asunto(s)
Adenoviridae/genética , Terapia Genética , Vectores Genéticos/genética , Viroterapia Oncolítica , Virus Oncolíticos/genética , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Animales , Muerte Celular/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Expresión Génica , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Humanos , Ratones , Viroterapia Oncolítica/métodos , Transgenes , Carga Tumoral , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo
19.
Cancer Lett ; 268(1): 98-109, 2008 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-18486325

RESUMEN

We investigated the expression pattern and clinical significance of the costimulatory ligands B7-1, B7-2, B7-H1, and B7-DC, and their counter-receptors CTLA-4 and PD-1 in pancreatic cancer. Gene expression of all examined costimulatory molecules was significantly upregulated in pancreatic cancer tissues. B7-1, B7-2, B7-H1, and B7-DC protein was detectable in pancreatic cancer cells. Only the expression of B7-H1 significantly correlated with postoperative survival (p<0.0001). B7-H1 was inducible in cultured pancreatic cancer cells by IFN-gamma and significantly correlated with the level of IFN-gamma expression in human pancreatic cancer tissues (Spearman rho=0.4536,p=0.0029). B7-H1 positive tumors showed an increased prevalence of tumor-infiltrating regulatory T cells (Tregs) compared to B7-H1 negative tumors. Among the investigated costimulatory molecules only tumor-associated B7-H1 seems to be of prognostic relevance in pancreatic cancer. B7-H1 might, therefore, be involved in the downregulation of antitumor responses through regulation of Tregs in pancreatic cancer. Our findings also suggest a dual role of IFN-gamma in antitumor response. Through induction of B7-H1 in pancreatic cancer cells IFN-gamma might contribute to the evasion of antitumor immunity.


Asunto(s)
Antígeno B7-1/metabolismo , Interferón gamma/metabolismo , Neoplasias Pancreáticas/metabolismo , Antígenos CD/metabolismo , Antígeno B7-2/metabolismo , Antígeno CTLA-4 , Línea Celular Tumoral , Citocinas/metabolismo , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/mortalidad , Proteína 2 Ligando de Muerte Celular Programada 1 , Análisis de Supervivencia , Linfocitos T Reguladores/inmunología , Regulación hacia Arriba
20.
Sci Rep ; 8(1): 12271, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115978

RESUMEN

Stimulation of cytosolic nucleic acid sensors of innate immunity by pathogen-derived nucleic acids is important for antimicrobial defence, but stimulation through self-derived nucleic acids may contribute to autoinflammation and cancer. DNA sensing in the cytosol requires the stimulator of interferon genes (STING), while cytosolic RNA sensors use mitochondrial antiviral-signalling protein (MAVS). In a murine model of two-thirds hepatectomy, combined deficiency of MAVS and STING resulted in strongly impaired hepatocyte proliferation and delayed recovery of liver mass. Whereas lack of MAVS and STING did not influence upregulation of the G1-phase cyclins D1 and E1, it substantially reduced the hyperphosphorylation of retinoblastoma protein, attenuated the activation of cyclin-dependent kinase (CDK)-2, delayed upregulation of CDK1 and cyclins A2 and B1, and impaired S-phase entry of hepatocytes. Mechanistically, lack of cytosolic nucleic acid sensors strongly upregulated the anti-proliferative mediators TGF-ß2 and activin A, which was associated with an increased expression of the cell cycle inhibitors p15 and p21. Partial hepatectomy was followed by the release of exosomes with abundant nucleic acid cargo, which may provide ligands for the MAVS and STING pathways. Together, these findings identify a previously unrecognised function of cytosolic nucleic acid sensors of innate immunity for promoting liver regeneration.


Asunto(s)
Citosol/metabolismo , ADN/metabolismo , Hepatectomía , Inmunidad Innata , Regeneración Hepática/inmunología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Animales , Ciclo Celular , Proliferación Celular , Hepatocitos/citología , Hepatocitos/metabolismo , Interleucina-6/biosíntesis , Proteínas de la Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA