Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 183(7): 1826-1847.e31, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33296702

RESUMEN

Inborn errors of human interferon gamma (IFN-γ) immunity underlie mycobacterial disease. We report a patient with mycobacterial disease due to inherited deficiency of the transcription factor T-bet. The patient has extremely low counts of circulating Mycobacterium-reactive natural killer (NK), invariant NKT (iNKT), mucosal-associated invariant T (MAIT), and Vδ2+ γδ T lymphocytes, and of Mycobacterium-non reactive classic TH1 lymphocytes, with the residual populations of these cells also producing abnormally small amounts of IFN-γ. Other lymphocyte subsets develop normally but produce low levels of IFN-γ, with the exception of CD8+ αß T and non-classic CD4+ αß TH1∗ lymphocytes, which produce IFN-γ normally in response to mycobacterial antigens. Human T-bet deficiency thus underlies mycobacterial disease by preventing the development of innate (NK) and innate-like adaptive lymphocytes (iNKT, MAIT, and Vδ2+ γδ T cells) and IFN-γ production by them, with mycobacterium-specific, IFN-γ-producing, purely adaptive CD8+ αß T, and CD4+ αß TH1∗ cells unable to compensate for this deficit.


Asunto(s)
Inmunidad Adaptativa , Inmunidad Innata , Interferón gamma/inmunología , Mycobacterium/inmunología , Proteínas de Dominio T Box/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Linaje de la Célula , Preescolar , Cromatina/metabolismo , Islas de CpG/genética , Metilación de ADN/genética , Células Dendríticas/metabolismo , Epigénesis Genética , Femenino , Homocigoto , Humanos , Mutación INDEL/genética , Lactante , Interferón gamma/metabolismo , Células Asesinas Naturales/citología , Células Asesinas Naturales/metabolismo , Mutación con Pérdida de Función/genética , Masculino , Infecciones por Mycobacterium/genética , Infecciones por Mycobacterium/inmunología , Infecciones por Mycobacterium/microbiología , Linaje , Proteínas de Dominio T Box/química , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Linfocitos T Colaboradores-Inductores/inmunología , Transcriptoma/genética
2.
Nat Immunol ; 19(9): 973-985, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30127434

RESUMEN

Human inborn errors of IFN-γ immunity underlie mycobacterial diseases. We describe patients with Mycobacterium bovis (BCG) disease who are homozygous for loss-of-function mutations of SPPL2A. This gene encodes a transmembrane protease that degrades the N-terminal fragment (NTF) of CD74 (HLA invariant chain) in antigen-presenting cells. The CD74 NTF therefore accumulates in the HLA class II+ myeloid and lymphoid cells of SPPL2a-deficient patients. This toxic fragment selectively depletes IL-12- and IL-23-producing CD1c+ conventional dendritic cells (cDC2s) and their circulating progenitors. Moreover, SPPL2a-deficient memory TH1* cells selectively fail to produce IFN-γ when stimulated with mycobacterial antigens in vitro. Finally, Sppl2a-/- mice lack cDC2s, have CD4+ T cells that produce small amounts of IFN-γ after BCG infection, and are highly susceptible to infection with BCG or Mycobacterium tuberculosis. These findings suggest that inherited SPPL2a deficiency in humans underlies mycobacterial disease by decreasing the numbers of cDC2s and impairing IFN-γ production by mycobacterium-specific memory TH1* cells.


Asunto(s)
Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Células Dendríticas/inmunología , Proteínas de la Membrana/metabolismo , Infecciones por Mycobacterium/inmunología , Mycobacterium bovis/fisiología , Mycobacterium tuberculosis/fisiología , Células TH1/inmunología , Tuberculosis/inmunología , Animales , Antígenos de Diferenciación de Linfocitos B/metabolismo , Células Cultivadas , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Inmunidad , Memoria Inmunológica , Lactante , Interferón gamma/metabolismo , Linfadenopatía , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Infecciones por Mycobacterium/genética , Vacunación
3.
Eur J Immunol ; : e2250336, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39188201

RESUMEN

Guillain-Barré syndrome (GBS) is a rare yet potentially life-threatening disorder of the peripheral nervous system (PNS), characterized by substantial clinical heterogeneity. Although classified as an autoimmune disease, the immune mechanisms underpinning distinct GBS subtypes remain largely elusive. Traditionally considered primarily antibody-mediated, the pathophysiology of GBS lacks clarity, posing challenges in the development of targeted and effective treatments. Nevertheless, recent investigations have substantially expanded our understanding of the disease, revealing an involvement of autoreactive T cell immunity in a major subtype of GBS patients and opening new biomedical perspectives. This review highlights these discoveries and offers a comprehensive overview of current knowledge about GBS, including ongoing challenges in disease management.

4.
Nature ; 562(7725): 63-68, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30232458

RESUMEN

Narcolepsy is a chronic sleep disorder caused by the loss of neurons that produce hypocretin. The close association with HLA-DQB1*06:02, evidence for immune dysregulation and increased incidence upon influenza vaccination together suggest that this disorder has an autoimmune origin. However, there is little evidence of autoreactive lymphocytes in patients with narcolepsy. Here we used sensitive cellular screens and detected hypocretin-specific CD4+ T cells in all 19 patients that we tested; T cells specific for tribbles homologue 2-another self-antigen of hypocretin neurons-were found in 8 out of 13 patients. Autoreactive CD4+ T cells were polyclonal, targeted multiple epitopes, were restricted primarily by HLA-DR and did not cross-react with influenza antigens. Hypocretin-specific CD8+ T cells were also detected in the blood and cerebrospinal fluid of several patients with narcolepsy. Autoreactive clonotypes were serially detected in the blood of the same-and even of different-patients, but not in healthy control individuals. These findings solidify the autoimmune aetiology of narcolepsy and provide a basis for rapid diagnosis and treatment of this disease.


Asunto(s)
Autoantígenos/inmunología , Autoantígenos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Narcolepsia/inmunología , Neuronas/inmunología , Neuronas/metabolismo , Orexinas/inmunología , Orexinas/metabolismo , Antígenos Virales , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Autoinmunidad/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/inmunología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Estudios de Casos y Controles , Separación Celular , Reacciones Cruzadas , Humanos , Memoria Inmunológica , Péptidos y Proteínas de Señalización Intracelular/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Narcolepsia/sangre , Narcolepsia/líquido cefalorraquídeo , Narcolepsia/diagnóstico , Orthomyxoviridae/inmunología
5.
Eur J Immunol ; 52(10): 1561-1571, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35833748

RESUMEN

According to the World Health Organization, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already infected more than 400 million people and caused over 5 million deaths globally. The infection is associated with a wide spectrum of clinical manifestations, ranging from no signs of illness to severe pathological complications that go beyond the typical respiratory symptoms. On this note, new-onset neurological and neuropsychiatric syndromes have been increasingly reported in a large fraction of COVID-19 patients, thus potentially representing a significant public health threat. Although the underlying pathophysiological mechanisms remain elusive, a growing body of evidence suggests that SARS-CoV-2 infection may trigger an autoimmune response, which could potentially contribute to the establishment and/or exacerbation of neurological disorders in COVID-19 patients. Shedding light on this aspect is urgently needed for the development of effective therapeutic intervention. This review highlights the current knowledge of the immune responses occurring in Neuro-COVID patients and discusses potential immune-mediated mechanisms by which SARS-CoV-2 infection may trigger neurological complications.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Autoinmunidad , COVID-19/complicaciones , Humanos , Enfermedades del Sistema Nervioso/etiología , SARS-CoV-2
6.
Eur J Immunol ; 51(3): 648-661, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33226131

RESUMEN

Enterobacteriaceae are a large family of Gram-negative bacteria that includes both commensals and opportunistic pathogens. The latter can cause severe nosocomial infections, with outbreaks of multi-antibiotics resistant strains, thus being a major public health threat. In this study, we report that Enterobacteriaceae-reactive memory Th cells were highly enriched in a CCR6+ CXCR3+ Th1*/17 cell subset and produced IFN-γ, IL-17A, and IL-22. This T cell subset was severely reduced in septic patients with K. pneumoniae bloodstream infection who also selectively lacked circulating K. pneumonie-reactive T cells. By combining heterologous antigenic stimulation, single cell cloning and TCR Vß sequencing, we demonstrate that a large fraction of memory Th cell clones was broadly cross-reactive to several Enterobacteriaceae species. These cross-reactive Th cell clones were expanded in vivo and a large fraction of them recognized the conserved outer membrane protein A antigen. Interestingly, Enterobacteriaceae broadly cross-reactive T cells were also prominent among in vitro primed naïve T cells. Collectively, these data point to the existence of immunodominant T cell epitopes shared among different Enterobacteriaceae species and targeted by cross-reactive T cells that are readily found in the pre-immune repertoire and are clonally expanded in the memory repertoire.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Enterobacteriaceae/inmunología , Memoria Inmunológica/inmunología , Células Cultivadas , Reacciones Cruzadas/inmunología , Epítopos de Linfocito T/inmunología , Humanos , Interferón gamma/inmunología , Interleucina-17/inmunología , Interleucinas/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Subgrupos de Linfocitos T/inmunología , Células TH1/inmunología , Células Th17/inmunología , Interleucina-22
7.
J Sleep Res ; 30(5): e13296, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33813771

RESUMEN

Narcolepsy type 1 (NT1) is a disorder with well-established markers and a suspected autoimmune aetiology. Conversely, the narcoleptic borderland (NBL) disorders, including narcolepsy type 2, idiopathic hypersomnia, insufficient sleep syndrome and hypersomnia associated with a psychiatric disorder, lack well-defined markers and remain controversial in terms of aetiology, diagnosis and management. The Swiss Primary Hypersomnolence and Narcolepsy Cohort Study (SPHYNCS) is a comprehensive multicentre cohort study, which will investigate the clinical picture, pathophysiology and long-term course of NT1 and the NBL. The primary aim is to validate new and reappraise well-known markers for the characterization of the NBL, facilitating the diagnostic process. Seven Swiss sleep centres, belonging to the Swiss Narcolepsy Network (SNaNe), joined the study and will prospectively enrol over 500 patients with recent onset of excessive daytime sleepiness (EDS), hypersomnia or a suspected central disorder of hypersomnolence (CDH) during a 3-year recruitment phase. Healthy controls and patients with EDS due to severe sleep-disordered breathing, improving after therapy, will represent two control groups of over 50 patients each. Clinical and electrophysiological (polysomnography, multiple sleep latency test, maintenance of wakefulness test) information, and information on psychomotor vigilance and a sustained attention to response task, actigraphy and wearable devices (long-term monitoring), and responses to questionnaires will be collected at baseline and after 6, 12, 24 and 36 months. Potential disease markers will be searched for in blood, cerebrospinal fluid and stool. Analyses will include quantitative hypocretin measurements, proteomics/peptidomics, and immunological, genetic and microbiota studies. SPHYNCS will increase our understanding of CDH and the relationship between NT1 and the NBL. The identification of new disease markers is expected to lead to better and earlier diagnosis, better prognosis and personalized management of CDH.


Asunto(s)
Trastornos de Somnolencia Excesiva , Narcolepsia , Estudios de Cohortes , Trastornos de Somnolencia Excesiva/diagnóstico , Trastornos de Somnolencia Excesiva/etiología , Trastornos de Somnolencia Excesiva/terapia , Humanos , Estudios Multicéntricos como Asunto , Narcolepsia/diagnóstico , Narcolepsia/terapia , Estudios Observacionales como Asunto , Estudios Prospectivos , Suiza
8.
J Neuroinflammation ; 16(1): 232, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31752904

RESUMEN

BACKGROUND: Echovirus 30 (E-30) is one of the most frequently isolated pathogens in aseptic meningitis worldwide. To gain access to the central nervous system (CNS), E-30 and immune cells have to cross one of the two main barriers of the CNS, the epithelial blood-cerebrospinal fluid barrier (BCSFB) or the endothelial blood-brain barrier (BBB). In an in vitro model of the BCSFB, it has been shown that E-30 can infect human immortalized brain choroid plexus papilloma (HIBCPP) cells. METHODS: In this study we investigated the migration of different T cell subpopulations, naive and effector T cells, through HIBCPP cells during E-30 infection. Effects of E-30 infection and the migration process were evaluated via immunofluorescence and flow cytometry analysis, as well as transepithelial resistance and dextran flux measurement. RESULTS: Th1 effector cells and enterovirus-specific effector T cells migrated through HIBCPP cells more efficiently than naive CD4+ T cells following E-30 infection of HIBCPP cells. Among the different naive T cell populations, CD8+ T cells crossed the E-30-infected HIBCPP cell layer in a significantly higher number than CD4+ T cells. A large amount of effector T cells also remained attached to the basolateral side of the HIBCPP cells compared with naive T cells. Analysis of HIBCPP barrier function showed significant alteration after E-30 infection and trans- as well as paracellular migration of T cells independent of the respective subpopulation. Morphologic analysis of migrating T cells revealed that a polarized phenotype was induced by the chemokine CXCL12, but reversed to a round phenotype after E-30 infection. Further characterization of migrating Th1 effector cells revealed a downregulation of surface adhesion proteins such as LFA-1 PSGL-1, CD44, and CD49d. CONCLUSION: Taken together these results suggest that naive CD8+ and Th1 effector cells are highly efficient to migrate through the BCSFB in an inflammatory environment. The T cell phenotype is modified during the migration process through HIBCPP cells.


Asunto(s)
Movimiento Celular/inmunología , Plexo Coroideo/metabolismo , Plexo Coroideo/virología , Infecciones por Echovirus/inmunología , Linfocitos T/inmunología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/virología , Humanos , Linfocitos T/metabolismo , Células Tumorales Cultivadas
9.
Nat Rev Immunol ; 24(1): 33-48, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37400646

RESUMEN

Narcolepsy type 1 (NT1) is a chronic sleep disorder resulting from the loss of a small population of hypothalamic neurons that produce wake-promoting hypocretin (HCRT; also known as orexin) peptides. An immune-mediated pathology for NT1 has long been suspected given its exceptionally tight association with the MHC class II allele HLA-DQB1*06:02, as well as recent genetic evidence showing associations with polymorphisms of T cell receptor genes and other immune-relevant loci and the increased incidence of NT1 that has been observed after vaccination with the influenza vaccine Pandemrix. The search for both self-antigens and foreign antigens recognized by the pathogenic T cell response in NT1 is ongoing. Increased T cell reactivity against HCRT has been consistently reported in patients with NT1, but data demonstrating a primary role for T cells in neuronal destruction are currently lacking. Animal models are providing clues regarding the roles of autoreactive CD4+ and CD8+ T cells in the disease. Elucidation of the pathogenesis of NT1 will allow for the development of targeted immunotherapies at disease onset and could serve as a model for other immune-mediated neurological diseases.


Asunto(s)
Linfocitos T CD8-positivos , Narcolepsia , Animales , Humanos , Narcolepsia/genética , Alelos
10.
Biochem Cell Biol ; 90(3): 269-78, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22300429

RESUMEN

Lactoferrin (LF), an iron-binding glycoprotein expressed in most biological fluids, represents a major component of mammalian innate immune system. The multiple activities of LF rely not only on its capacity to bind iron but also to interact with molecular and cellular components of both the host and pathogens. LF can bind and sequester lipopolysaccharide thus preventing proinflammatory pathway activation, sepsis, and tissue damage. However, the interplay between LF and lipopolysaccharide is complex and may lead to different outcomes including both the suppression of inflammatory response and immune activation. Understanding the molecular basis and the functional consequences of this complex interaction is critically relevant in the development of LF-based therapeutic interventions in humans.


Asunto(s)
Factores Inmunológicos/fisiología , Lactoferrina/fisiología , Lipopolisacáridos/metabolismo , Animales , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Factores Inmunológicos/metabolismo , Lactoferrina/metabolismo , Lipopolisacáridos/antagonistas & inhibidores , Unión Proteica , Receptor Toll-Like 4/metabolismo
11.
Semin Immunopathol ; 44(5): 611-623, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35445831

RESUMEN

Narcolepsy is a rare chronic neurological disorder characterized by an irresistible excessive daytime sleepiness and cataplexy. The disease is considered to be the result of the selective disruption of neuronal cells in the lateral hypothalamus expressing the neuropeptide hypocretin, which controls the sleep-wake cycle. Diagnosis and management of narcolepsy represent still a substantial medical challenge due to the large heterogeneity in the clinical manifestation of the disease as well as to the lack of understanding of the underlying pathophysiological mechanisms. However, significant advances have been made in the last years, thus opening new perspective in the field. This review describes the current knowledge of clinical presentation and pathology of narcolepsy as well as the existing diagnostic criteria and therapeutic intervention for the disease management. Recent evidence on the potential immune-mediated mechanisms that may underpin the disease establishment and progression are also highlighted.


Asunto(s)
Narcolepsia , Neuropéptidos , Humanos , Péptidos y Proteínas de Señalización Intracelular/uso terapéutico , Narcolepsia/diagnóstico , Narcolepsia/tratamiento farmacológico , Narcolepsia/etiología , Orexinas/uso terapéutico , Sueño/fisiología
12.
Biometals ; 23(3): 387-97, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20191308

RESUMEN

Lactoferrin (Lf) is a mammalian exclusive protein widely distributed in milk and exocrine secretions exhibiting multifunctional properties. Many of the proven or proposed functions of Lf, apart from its iron binding activity, depend on its capacity to bind to other macromolecules. Lf can bind and sequester lipopolysaccharide (LPS), thus preventing pro-inflammatory pathway activation, sepsis and tissue damage. However, the interplay between Lf and LPS is complex, and may result in different outcomes, including both suppression of the inflammatory response and immune activation. These findings are critically relevant in the development of Lf-based therapeutic interventions in humans. Understanding the molecular basis and functional consequences of Lf-LPS interaction will provide insights for determining its role in health and disease.


Asunto(s)
Lactoferrina/inmunología , Lactoferrina/metabolismo , Lipopolisacáridos/inmunología , Lipopolisacáridos/metabolismo , Animales , Humanos
13.
Fluids Barriers CNS ; 17(1): 3, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32008573

RESUMEN

BACKGROUND: The brain barriers establish compartments in the central nervous system (CNS) that significantly differ in their communication with the peripheral immune system. In this function they strictly control T-cell entry into the CNS. T cells can reach the CNS by either crossing the endothelial blood-brain barrier (BBB) or the epithelial blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus (ChP). OBJECTIVE: Analysis of the cellular and molecular mechanisms involved in the migration of different human CD4+ T-cell subsets across the BBB versus the BCSFB. METHODS: Human in vitro models of the BBB and BCSFB were employed to study the migration of circulating and CNS-entry experienced CD4+ T helper cell subsets (Th1, Th1*, Th2, Th17) across the BBB and BCSFB under inflammatory and non-inflammatory conditions in vitro. RESULTS: While under non-inflammatory conditions Th1* and Th1 cells preferentially crossed the BBB, under inflammatory conditions the migration rate of all Th subsets across the BBB was comparable. The migration of all Th subsets across the BCSFB from the same donor was 10- to 20-fold lower when compared to their migration across the BBB. Interestingly, Th17 cells preferentially crossed the BCSFB under both, non-inflamed and inflamed conditions. Barrier-crossing experienced Th cells sorted from CSF of MS patients showed migratory characteristics indistinguishable from those of circulating Th cells of healthy donors. All Th cell subsets could additionally cross the BCSFB from the CSF to ChP stroma side. T-cell migration across the BCSFB involved epithelial ICAM-1 irrespective of the direction of migration. CONCLUSIONS: Our observations underscore that different Th subsets may use different anatomical routes to enter the CNS during immune surveillance versus neuroinflammation with the BCSFB establishing a tighter barrier for T-cell entry into the CNS compared to the BBB. In addition, CNS-entry experienced Th cell subsets isolated from the CSF of MS patients do not show an increased ability to cross the brain barriers when compared to circulating Th cell subsets from healthy donors underscoring the active role of the brain barriers in controlling T-cell entry into the CNS. Also we identify ICAM-1 to mediate T cell migration across the BCSFB.


Asunto(s)
Barrera Hematoencefálica/inmunología , Linfocitos T CD4-Positivos/citología , Células Epiteliales/citología , Subgrupos de Linfocitos T/citología , Transporte Biológico/inmunología , Movimiento Celular/inmunología , Sistema Nervioso Central/inmunología , Plexo Coroideo/inmunología , Plexo Coroideo/fisiología , Células Endoteliales/citología , Humanos
16.
Sci Immunol ; 3(30)2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30578351

RESUMEN

Hundreds of patients with autosomal recessive, complete IL-12p40 or IL-12Rß1 deficiency have been diagnosed over the last 20 years. They typically suffer from invasive mycobacteriosis and, occasionally, from mucocutaneous candidiasis. Susceptibility to these infections is thought to be due to impairments of IL-12-dependent IFN-γ immunity and IL-23-dependent IL-17A/IL-17F immunity, respectively. We report here patients with autosomal recessive, complete IL-12Rß2 or IL-23R deficiency, lacking responses to IL-12 or IL-23 only, all of whom, unexpectedly, display mycobacteriosis without candidiasis. We show that αß T, γδ T, B, NK, ILC1, and ILC2 cells from healthy donors preferentially produce IFN-γ in response to IL-12, whereas NKT cells and MAIT cells preferentially produce IFN-γ in response to IL-23. We also show that the development of IFN-γ-producing CD4+ T cells, including, in particular, mycobacterium-specific TH1* cells (CD45RA-CCR6+), is dependent on both IL-12 and IL-23. Last, we show that IL12RB1, IL12RB2, and IL23R have similar frequencies of deleterious variants in the general population. The comparative rarity of symptomatic patients with IL-12Rß2 or IL-23R deficiency, relative to IL-12Rß1 deficiency, is, therefore, due to lower clinical penetrance. There are fewer symptomatic IL-23R- and IL-12Rß2-deficient than IL-12Rß1-deficient patients, not because these genetic disorders are rarer, but because the isolated absence of IL-12 or IL-23 is, in part, compensated by the other cytokine for the production of IFN-γ, thereby providing some protection against mycobacteria. These experiments of nature show that human IL-12 and IL-23 are both required for optimal IFN-γ-dependent immunity to mycobacteria, both individually and much more so cooperatively.


Asunto(s)
Inmunidad Innata/inmunología , Interferón gamma/inmunología , Interleucina-12/inmunología , Interleucina-23/inmunología , Infecciones por Mycobacterium no Tuberculosas/inmunología , Mycobacterium/inmunología , Humanos , Interleucina-12/deficiencia , Interleucina-12/genética , Interleucina-23/deficiencia , Interleucina-23/genética , Linaje
18.
Science ; 347(6220): 400-6, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25477212

RESUMEN

Distinct types of CD4(+) T cells protect the host against different classes of pathogens. However, it is unclear whether a given pathogen induces a single type of polarized T cell. By combining antigenic stimulation and T cell receptor deep sequencing, we found that human pathogen- and vaccine-specific T helper 1 (T(H)1), T(H)2, and T(H)17 memory cells have different frequencies but comparable diversity and comprise not only clones polarized toward a single fate, but also clones whose progeny have acquired multiple fates. Single naïve T cells primed by a pathogen in vitro could also give rise to multiple fates. Our results unravel an unexpected degree of interclonal and intraclonal functional heterogeneity of the human T cell response and suggest that polarized responses result from preferential expansion rather than priming.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Candida albicans/inmunología , Interacciones Huésped-Patógeno/inmunología , Memoria Inmunológica , Mycobacterium tuberculosis/inmunología , Subgrupos de Linfocitos T/inmunología , Vacunas/inmunología , Secuencia de Aminoácidos , Células Cultivadas , Células Clonales , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Activación de Linfocitos , Datos de Secuencia Molecular , Receptores de Antígenos de Linfocitos T/genética , Células TH1/inmunología , Células Th17/inmunología , Células Th2/inmunología
19.
Nat Commun ; 6: 6431, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25775432

RESUMEN

T helper (TH) cell polarization during priming is modulated by a number of signals, but whether polarization to a given phenotype also influences recall responses of memory TH cells is relatively unknown. Here we show that miR-181a is selectively induced in both human and mouse naive T cells differentiating into the TH17, but not TH1 or TH2 subset. In human memory TH17 cells, miR-181a regulates responses to cognate antigens through modulation of ERK phosphorylation. By enhancing the signalling cascade from the T-cell receptor, such molecular network reduces the threshold of TH17 cell activation. Moreover, at a late time point, the same network induces a self-regulatory mechanism dependent on ID3, a negative regulator of transcription factors that control RORC expression, thus modulating TH17 activity. Our results demonstrate that the phenotype acquired by TH cells during priming contributes to their threshold of activation to secondary antigenic stimulations, thus influencing memory responses.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Memoria Inmunológica , MicroARNs/metabolismo , Células Th17/citología , Animales , Antígenos/química , Candida albicans/metabolismo , Diferenciación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , Fenotipo , Fosforilación , Interferencia de ARN , Transducción de Señal
20.
Toxins (Basel) ; 7(12): 5472-83, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26694465

RESUMEN

Lactoferrin (LF) exhibits a wide range of immunomodulatory activities including modulation of cytokine and chemokine secretion. In this study, we demonstrate that bovine LF (bLF) up-modulates, in a concentration- and time-dependent manner, CCL1 secretion in monocytes (Mo) at the early stage of differentiation toward dendritic cells (DCs), and in fully differentiated immature Mo-derived DCs (MoDCs). In both cell types, up-modulation of CCL1 secretion is an early event following bLF-mediated enhanced accumulation of CCL1 transcripts. Notably, bLF-mediated up-regulation of CCL1 involves the engagement of distinct surface receptors in MoDCs and their Mo precursors. We show that bLF-mediated engagement of CD36 contributes to CCL1 induction in differentiating Mo. Conversely, toll-like receptor (TLR)2 blocking markedly reduces bLF-induced CCL1 production in MoDCs. These findings add further evidence for cell-specific differential responses elicited by bLF through the engagement of distinct TLRs and surface receptors. Furthermore, the different responses observed at early and late stages of Mo differentiation towards DCs may be relevant in mediating bLF effects in specific body districts, where these cell types may be differently represented in physiopathological conditions.


Asunto(s)
Quimiocina CCL1/metabolismo , Células Dendríticas/efectos de los fármacos , Lactoferrina/farmacología , Monocitos/efectos de los fármacos , Animales , Bovinos , Células Cultivadas , Quimiocina CCL1/genética , Células Dendríticas/metabolismo , Humanos , Monocitos/citología , Monocitos/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA