Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33947817

RESUMEN

DNA damage plays a central role in the cellular pathogenesis of polyglutamine (polyQ) diseases, including Huntington's disease (HD). In this study, we showed that the expression of untranslatable expanded CAG RNA per se induced the cellular DNA damage response pathway. By means of RNA sequencing (RNA-seq), we found that expression of the Nudix hydrolase 16 (NUDT16) gene was down-regulated in mutant CAG RNA-expressing cells. The loss of NUDT16 function results in a misincorporation of damaging nucleotides into DNAs and leads to DNA damage. We showed that small CAG (sCAG) RNAs, species generated from expanded CAG transcripts, hybridize with CUG-containing NUDT16 mRNA and form a CAG-CUG RNA heteroduplex, resulting in gene silencing of NUDT16 and leading to the DNA damage and cellular apoptosis. These results were further validated using expanded CAG RNA-expressing mouse primary neurons and in vivo R6/2 HD transgenic mice. Moreover, we identified a bisamidinium compound, DB213, that interacts specifically with the major groove of the CAG RNA homoduplex and disfavors the CAG-CUG heteroduplex formation. This action subsequently mitigated RNA-induced silencing complex (RISC)-dependent NUDT16 silencing in both in vitro cell and in vivo mouse disease models. After DB213 treatment, DNA damage, apoptosis, and locomotor defects were rescued in HD mice. This work establishes NUDT16 deficiency by CAG repeat RNAs as a pathogenic mechanism of polyQ diseases and as a potential therapeutic direction for HD and other polyQ diseases.


Asunto(s)
Apoptosis/genética , Daño del ADN , Enfermedad de Huntington/genética , Péptidos/genética , Pirofosfatasas/genética , ARN/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Apoptosis/efectos de los fármacos , Benzamidinas/metabolismo , Benzamidinas/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/prevención & control , Ratones Endogámicos C57BL , Ratones Transgénicos , Simulación de Dinámica Molecular , Pirofosfatasas/metabolismo , ARN/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Biochem Soc Trans ; 51(4): 1647-1659, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37387352

RESUMEN

Amyloid precursor protein (APP) is a key molecule in the pathogenesis of Alzheimer's disease (AD) as the pathogenic amyloid-ß peptide is derived from it. Two closely related APP family proteins (APPs) have also been identified in mammals. Current knowledge, including genetic analyses of gain- and loss-of-function mutants, highlights the importance of APPs in various physiological functions. Notably, APPs consist of multiple extracellular and intracellular protein-binding regions/domains. Protein-protein interactions are crucial for many cellular processes. In past decades, many APPs interactors have been identified which assist the revelation of the putative roles of APPs. Importantly, some of these interactors have been shown to influence several APPs-mediated neuronal processes which are found defective in AD and other neurodegenerative disorders. Studying APPs-interactor complexes would not only advance our understanding of the physiological roles of APPs but also provide further insights into the association of these processes to neurodegeneration, which may lead to the development of novel therapies. In this mini-review, we summarize the roles of APPs-interactor complexes in neurodevelopmental processes including neurogenesis, neurite outgrowth, axonal guidance and synaptogenesis.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Animales , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Neurogénesis , Mamíferos/metabolismo
3.
FASEB J ; 36(11): e22594, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36250347

RESUMEN

Neurite outgrowth is a fundamental process in neurons that produces extensions and, consequently, neural connectivity. Neurite damage and atrophy are observed in various brain injuries and disorders. Understanding the intrinsic pathways of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration. Insulin is a pivotal hormone in the regulation of glucose homeostasis. There is increasing evidence for the neurotrophic functions of insulin, including the induction of neurite outgrowth. However, the associated mechanism remains elusive. Here, we demonstrate that insulin potentiates neurite outgrowth mediated by the small GTPases ADP-ribosylation factor 6 (ARF6) and Ras-related C3 botulinum toxin substrate 1 (Rac1) through the neuronal adaptor FE65. Moreover, insulin enhances atypical protein kinase Cι/λ (PKCι/λ) activation and FE65 phosphorylation at serine 459 (S459) in neurons and mouse brains. In vitro and cellular assays show that PKCι/λ phosphorylated FE65 at S459. Consistently, insulin potentiates FE65 S459 phosphorylation only in the presence of PKCι/λ. Phosphomimetic studies show that an FE65 S459E mutant potently activates ARF6, Rac1, and neurite outgrowth. Notably, this phosphomimetic mutation enhances the FE65-ARF6 interaction, a process that promotes ARF6-Rac1-mediated neurite outgrowth. Likewise, insulin treatment and PKCι/λ overexpression potentiate the FE65-ARF6 interaction. Conversely, PKCι/λ knockdown suppresses the stimulatory effect of FE65 on ARF6-Rac1-mediated neurite outgrowth. The effect of insulin on neurite outgrowth is also markedly attenuated in PKCι/λ knockdown neurons, in the presence and absence of FE65. Our findings reveal a novel mechanism linking insulin with ARF6-Rac1-dependent neurite extension through the PKCι/λ-mediated phosphorylation of FE65.


Asunto(s)
Insulina , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Proteína de Unión al GTP rac1 , Factor 6 de Ribosilación del ADP , Animales , Glucosa/metabolismo , Insulina/metabolismo , Insulina/farmacología , Ratones , Neuritas/metabolismo , Proyección Neuronal/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Serina/metabolismo , Proteína de Unión al GTP rac1/metabolismo
4.
Mol Biol Evol ; 37(10): 2955-2965, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32521021

RESUMEN

A striking feature of micro-RNAs is that they are often clustered in the genomes of animals. The functional and evolutionary consequences of this clustering remain obscure. Here, we investigated a micro-RNA cluster miR-6/5/4/286/3/309 that is conserved across drosophilid lineages. Small RNA sequencing revealed expression of this micro-RNA cluster in Drosophila melanogaster leg discs, and conditional overexpression of the whole cluster resulted in leg appendage shortening. Transgenic overexpression lines expressing different combinations of micro-RNA cluster members were also constructed. Expression of individual micro-RNAs from the cluster resulted in a normal wild-type phenotype, but either the expression of several ancient micro-RNAs together (miR-5/4/286/3/309) or more recently evolved clustered micro-RNAs (miR-6-1/2/3) can recapitulate the phenotypes generated by the whole-cluster overexpression. Screening of transgenic fly lines revealed downregulation of leg-patterning gene cassettes in generation of the leg-shortening phenotype. Furthermore, cell transfection with different combinations of micro-RNA cluster members revealed a suite of downstream genes targeted by all cluster members, as well as complements of targets that are unique for distinct micro-RNAs. Considered together, the micro-RNA targets and the evolutionary ages of each micro-RNA in the cluster demonstrate the importance of micro-RNA clustering, where new members can reinforce and modify the selection forces on both the cluster regulation and the gene regulatory network of existing micro-RNAs. Key words: micro-RNA, cluster, evolution.


Asunto(s)
Drosophila melanogaster/genética , Evolución Molecular , MicroARNs/genética , Animales , Secuencia de Bases , Secuencia Conservada , Drosophila melanogaster/metabolismo , Femenino , Masculino , MicroARNs/metabolismo , Familia de Multigenes , Selección Genética
5.
FASEB J ; 34(12): 16397-16413, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33047393

RESUMEN

Ras-related C3 botulinum toxin substrate 1 (Rac1) is a member of the Rho family of GTPases that functions as a molecular switch to regulate many important cellular events including actin cytoskeleton remodeling during neurite outgrowth. Engulfment and cell motility 1 (ELMO1)-dedicator of cytokinesis 1 (DOCK180) is a bipartite guanine nucleotide exchange factor (GEF) complex that has been reported to activate Rac1 on the plasma membrane (PM). Emerging evidence suggests that the small GTPase ADP ribosylation factor 6 (ARF6) activates Rac1 via the ELMO1/DOCK180 complex. However, the exact mechanism by which ARF6 triggers ELMO1/DOCK180-mediated Rac1 signaling remains unclear. Here, we report that the neuronal scaffold protein FE65 serves as a functional link between ARF6 and ELMO1, allowing the formation of a multimeric signaling complex. Interfering with formation of this complex by transfecting either FE65-binding-defective mutants or FE65 siRNA attenuates both ARF6-ELMO1-mediated Rac1 activation and neurite elongation. Notably, the PM trafficking of ELMO1 is markedly decreased in cells with suppressed expression of either FE65 or ARF6. Likewise, this process is attenuated in the FE65-binding-defective mutants transfected cells. Moreover, overexpression of FE65 increases the amount of ELMO1 in the recycling endosome, an organelle responsible for returning proteins to the PM, whereas knockout of FE65 shows opposite effect. Together, our data indicates that FE65 potentiates ARF6-Rac1 signaling by orchestrating ARF6 and ELMO1 to promote the PM trafficking of ELMO1 via the endosomal recycling pathway, and thus, promotes Rac1-mediated neurite outgrowth.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Proyección Neuronal/fisiología , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Factor 6 de Ribosilación del ADP , Animales , Células CHO , Células COS , Línea Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Cricetulus , Endosomas/metabolismo , Células HEK293 , Humanos , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología
6.
J Biol Chem ; 294(1): 372-378, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30409901

RESUMEN

The ribosomal maturation factor P (RimP) is a highly conserved protein in bacteria and has been shown to be important in ribosomal assembly in Escherichia coli Because of its central importance in bacterial metabolism, RimP represents a good potential target for drug design to combat human pathogens such as Mycobacterium tuberculosis However, to date, the only RimP structure available is the NMR structure of the ortholog in another bacterial pathogen, Streptococcus pneumoniae Here, we report a 2.2 Å resolution crystal structure of MSMEG_2624, the RimP ortholog in the close M. tuberculosis relative Mycobacterium smegmatis, and using in vitro binding assays, we show that MSMEG_2624 interacts with the small ribosomal protein S12, also known as RpsL. Further analyses revealed that the conserved residues in the linker region between the N- and C-terminal domains of MSMEG_2624 are essential for binding to RpsL. However, neither of the two domains alone was sufficient to form strong interactions with RpsL. More importantly, the linker region was essential for in vivo ribosomal biogenesis. Our study provides critical mechanistic insights into the role of RimP in ribosome biogenesis. We anticipate that the MSMEG_2624 crystal structure has the potential to be used for drug design to manage M. tuberculosis infections.


Asunto(s)
Proteínas Bacterianas , Mycobacterium smegmatis , Proteínas Ribosómicas , Ribosomas , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Proteínas de Escherichia coli , Mycobacterium smegmatis/química , Mycobacterium smegmatis/metabolismo , Unión Proteica , Dominios Proteicos , Proteína Ribosómica S9 , Proteínas Ribosómicas/biosíntesis , Proteínas Ribosómicas/química , Ribosomas/química , Ribosomas/metabolismo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/metabolismo
7.
J Biol Chem ; 294(8): 2757-2770, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30593503

RESUMEN

Polyglutamine (polyQ) diseases are a group of dominantly inherited neurodegenerative disorders caused by the expansion of an unstable CAG repeat in the coding region of the affected genes. Hallmarks of polyQ diseases include the accumulation of misfolded protein aggregates, leading to neuronal degeneration and cell death. PolyQ diseases are currently incurable, highlighting the urgent need for approaches that inhibit the formation of disaggregate cytotoxic polyQ protein inclusions. Here, we screened for bisamidine-based inhibitors that can inhibit neuronal polyQ protein inclusions. We demonstrated that one inhibitor, AQAMAN, prevents polyQ protein aggregation and promotes de-aggregation of self-assembled polyQ proteins in several models of polyQ diseases. Using immunocytochemistry, we found that AQAMAN significantly reduces polyQ protein aggregation and specifically suppresses polyQ protein-induced cell death. Using a recombinant and purified polyQ protein (thioredoxin-Huntingtin-Q46), we further demonstrated that AQAMAN interferes with polyQ self-assembly, preventing polyQ aggregation, and dissociates preformed polyQ aggregates in a cell-free system. Remarkably, AQAMAN feeding of Drosophila expressing expanded polyQ disease protein suppresses polyQ-induced neurodegeneration in vivo In addition, using inhibitors and activators of the autophagy pathway, we demonstrated that AQAMAN's cytoprotective effect against polyQ toxicity is autophagy-dependent. In summary, we have identified AQAMAN as a potential therapeutic for combating polyQ protein toxicity in polyQ diseases. Our findings further highlight the importance of the autophagy pathway in clearing harmful polyQ proteins.


Asunto(s)
Autofagia , Modelos Animales de Enfermedad , Furanos/farmacología , Cuerpos de Inclusión/patología , Enfermedades Neurodegenerativas/prevención & control , Neuronas/patología , Péptidos/metabolismo , Animales , Citoprotección , Drosophila melanogaster/fisiología , Furanos/química , Humanos , Cuerpos de Inclusión/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Péptidos/química , Ratas
8.
RNA ; 24(4): 486-498, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29295891

RESUMEN

Polyglutamine (polyQ) diseases are a class of progressive neurodegenerative disorders characterized by the expression of both expanded CAG RNA and misfolded polyQ protein. We previously reported that the direct interaction between expanded CAG RNA and nucleolar protein nucleolin (NCL) impedes preribosomal RNA (pre-rRNA) transcription, and eventually triggers nucleolar stress-induced apoptosis in polyQ diseases. Here, we report that a 21-amino acid peptide, named "beta-structured inhibitor for neurodegenerative diseases" (BIND), effectively suppresses toxicity induced by expanded CAG RNA. When administered to a cell model, BIND potently inhibited cell death induced by expanded CAG RNA with an IC50 value of ∼0.7 µM. We showed that the function of BIND is dependent on Glu2, Lys13, Gly14, Ile18, Glu19, and Phe20. BIND treatment restored the subcellular localization of nucleolar marker protein and the expression level of pre-45s rRNA Through isothermal titration calorimetry analysis, we demonstrated that BIND suppresses nucleolar stress via a direct interaction with CAG RNA in a length-dependent manner. The mean binding constants (KD) of BIND to SCA2CAG22 , SCA2CAG42 , SCA2CAG55 , and SCA2CAG72 RNA are 17.28, 5.60, 4.83, and 0.66 µM, respectively. In vivo, BIND ameliorates retinal degeneration and climbing defects, and extends the lifespan of Drosophila expressing expanded CAG RNA. These effects suggested that BIND can suppress neurodegeneration in diverse polyQ disease models in vivo and in vitro without exerting observable cytotoxic effect. Our results collectively demonstrated that BIND is an effective inhibitor of expanded CAG RNA-induced toxicity in polyQ diseases.


Asunto(s)
Enfermedad de Huntington/terapia , Péptidos/farmacología , Deficiencias en la Proteostasis/genética , Ataxias Espinocerebelosas/terapia , Repeticiones de Trinucleótidos/genética , Animales , Muerte Celular/efectos de los fármacos , Drosophila/genética , Células HEK293 , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Péptidos/metabolismo , Fosfoproteínas/genética , Pliegue de Proteína , Deficiencias en la Proteostasis/patología , Deficiencias en la Proteostasis/terapia , ARN Ribosómico/genética , Proteínas de Unión al ARN/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Transcripción Genética/genética , Repeticiones de Trinucleótidos/efectos de los fármacos , Nucleolina
9.
FASEB J ; 33(11): 12019-12035, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31373844

RESUMEN

Amyloid-ß (Aß) is derived from the proteolytic processing of amyloid precursor protein (APP), and the deposition of extracellular Aß to form amyloid plaques is a pathologic hallmark of Alzheimer's disease (AD). Although reducing Aß generation and accumulation has been proposed as a means of treating the disease, adverse side effects and unsatisfactory efficacy have been reported in several clinical trials that sought to lower Aß levels. Engulfment adaptor phosphotyrosine-binding (PTB) domain containing 1 (GULP1) is a molecular adaptor that has been shown to interact with APP to alter Aß production. Therefore, the modulation of the GULP1-APP interaction may be an alternative approach to reducing Aß. However, the mechanisms that regulate GULP1-APP binding remain elusive. As GULP1 is a phosphoprotein, and because phosphorylation is a common mechanism that regulates protein interaction, we anticipated that GULP1 phosphorylation would influence GULP1-APP interaction and thereby Aß production. We show here that the phosphorylation of GULP1 threonine 35 (T35) reduces GULP1-APP interaction and suppresses the stimulatory effect of GULP1 on APP processing. The residue is phosphorylated by an isoform of atypical PKC (PKCζ). Overexpression of PKCζ reduces both GULP1-APP interaction and GULP1-mediated Aß generation. Moreover, the activation of PKCζ via insulin suppresses APP processing. In contrast, GULP1-mediated APP processing is enhanced in PKCζ knockout cells. Similarly, PKC ι, another member of atypical PKC, also decreases GULP1-mediated APP processing. Intriguingly, our X-ray crystal structure of GULP1 PTB-APP intracellular domain (AICD) peptide reveals that GULP1 T35 is not located at the GULP1-AICD binding interface; rather, it immediately precedes the ß1-α2 loop that forms a portion of the binding groove for the APP helix αC. Phosphorylating the residue may induce an allosteric effect on the conformation of the binding groove. Our results indicate that GULP1 T35 phosphorylation is a mechanism for the regulation of GULP1-APP interaction and thereby APP processing. Moreover, the activation of atypical PKC, such as by insulin, may confer a beneficial effect on AD by lowering GULP1-mediated Aß production.-Chau, D. D.-L., Yung, K. W.-Y., Chan, W. W.-L., An, Y., Hao, Y., Chan, H.-Y. E., Ngo, J. C.-K., Lau, K.-F. Attenuation of amyloid-ß generation by atypical protein kinase C-mediated phosphorylation of engulfment adaptor PTB domain containing 1 threonine 35.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Treonina/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Células CHO , Línea Celular Tumoral , Cricetulus , Células HEK293 , Humanos , Fosforilación , Unión Proteica
10.
EMBO Rep ; 19(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30026307

RESUMEN

Planar cell polarity (PCP) describes a cell-cell communication process through which individual cells coordinate and align within the plane of a tissue. In this study, we show that overexpression of Fuz, a PCP gene, triggers neuronal apoptosis via the dishevelled/Rac1 GTPase/MEKK1/JNK/caspase signalling axis. Consistent with this finding, endogenous Fuz expression is upregulated in models of polyglutamine (polyQ) diseases and in fibroblasts from spinocerebellar ataxia type 3 (SCA3) patients. The disruption of this upregulation mitigates polyQ-induced neurodegeneration in Drosophila We show that the transcriptional regulator Yin Yang 1 (YY1) associates with the Fuz promoter. Overexpression of YY1 promotes the hypermethylation of Fuz promoter, causing transcriptional repression of Fuz Remarkably, YY1 protein is recruited to ATXN3-Q84 aggregates, which reduces the level of functional, soluble YY1, resulting in Fuz transcriptional derepression and induction of neuronal apoptosis. Furthermore, Fuz transcript level is elevated in amyloid beta-peptide, Tau and α-synuclein models, implicating its potential involvement in other neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Taken together, this study unveils a generic Fuz-mediated apoptotic cell death pathway in neurodegenerative disorders.


Asunto(s)
Apoptosis , Polaridad Celular/genética , Polaridad Celular/fisiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Adulto , Anciano , Péptidos beta-Amiloides/metabolismo , Animales , Caspasa 3/metabolismo , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Proteínas Dishevelled/metabolismo , Drosophila , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , MAP Quinasa Quinasa 4/metabolismo , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Enfermedades Neurodegenerativas/inducido químicamente , Péptidos/farmacología , Ratas , Factor de Transcripción YY1/genética , alfa-Sinucleína/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas tau/metabolismo
11.
J Neurosci ; 38(37): 8071-8086, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209205

RESUMEN

The octomeric exocyst complex governs the final step of exocytosis in both plants and animals. Its roles, however, extend beyond exocytosis and include organelle biogenesis, ciliogenesis, cell migration, and cell growth. Exo70 is a conserved component of the exocyst whose function in Drosophila is unclear. In this study, we characterized two mutant alleles of Drosophila exo70. exo70 mutants exhibit reduced synaptic growth, locomotor activity, glutamate receptor density, and mEPSP amplitude. We found that presynaptic Exo70 is necessary for normal synaptic growth at the neuromuscular junction (NMJ). At the neuromuscular junction, exo70 genetically interacts with the small GTPase ralA to regulate synaptic growth. Loss of Exo70 leads to the blockage of JNK signaling-, activity-, and temperature-induced synaptic outgrowths. We showed that this phenotype is associated with an impairment of integral membrane protein transport to the cell surface at synaptic terminals. In octopaminergic motor neurons, Exo70 is detected in synaptic varicosities, as well as the regions of membrane extensions in response to activity stimulation. Strikingly, mild thermal stress causes severe neurite outgrowth defects and pharate adult lethality in exo70 mutants. exo70 mutants also display defective locomotor activity in response to starvation stress. These results demonstrated that Exo70 is an important regulator of induced synaptic growth and is crucial for an organism's adaptation to environmental changes.SIGNIFICANCE STATEMENT The exocyst complex is a conserved protein complex directing secretory vesicles to the site of membrane fusion during exocytosis, which is essential for transporting proteins and membranes to the cell surface. Exo70 is a subunit of the exocyst complex whose roles in neurons remain elusive, and its function in Drosophila is unclear. In Drosophila, Exo70 is expressed in both glutamatergic and octopaminergic neurons, and presynaptic Exo70 regulates synaptic outgrowth. Moreover, exo70 mutants have impaired integral membrane transport to the cell surface at synaptic terminals and block several kinds of induced synaptic growth. Remarkably, elevated temperature causes severe arborization defects and lethality in exo70 mutants, thus underpinning the importance of Exo70 functions in development and adaptation to the environment.


Asunto(s)
Supervivencia Celular/genética , Proteínas de Drosophila/metabolismo , Exocitosis/fisiología , Calor , Proyección Neuronal/genética , Estrés Fisiológico/genética , Proteínas de Transporte Vesicular/metabolismo , Animales , Animales Modificados Genéticamente , Membrana Celular/metabolismo , Drosophila , Proteínas de Drosophila/genética , Neuritas/metabolismo , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Neuronas/metabolismo , Proteínas de Transporte Vesicular/genética
12.
J Biol Chem ; 293(20): 7674-7688, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29615491

RESUMEN

Neurite outgrowth is a crucial process in developing neurons for neural network formation. Understanding the regulatory mechanisms of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration after nerve injury and in neurodegenerative disorders. FE65 is a brain-enriched adaptor that stimulates Rac1-mediated neurite elongation. However, the precise mechanism by which FE65 promotes the process remains elusive. Here, we show that ELMO1, a subunit of ELMO1-DOCK180 bipartite Rac1 guanine nucleotide exchange factor (GEF), interacts with the FE65 N-terminal region. Overexpression of FE65 and/or ELMO1 enhances, whereas knockdown of FE65 or ELMO1 inhibits, neurite outgrowth and Rac1 activation. The effect of FE65 alone or together with ELMO1 is attenuated by an FE65 double mutation that disrupts FE65-ELMO1 interaction. Notably, FE65 is found to activate ELMO1 by diminishing ELMO1 intramolecular autoinhibitory interaction and to promote the targeting of ELMO1 to the plasma membrane, where Rac1 is activated. We also show that FE65, ELMO1, and DOCK180 form a tripartite complex. Knockdown of DOCK180 reduces the stimulatory effect of FE65-ELMO1 on Rac1 activation and neurite outgrowth. Thus, we identify a novel mechanism by which FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating ELMO1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Proyección Neuronal/fisiología , Neuronas/citología , Proteínas Nucleares/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Movimiento Celular , Células Cultivadas , Humanos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas Nucleares/genética , Ratas , Proteína de Unión al GTP rac1/genética
13.
J Biol Chem ; 293(36): 13961-13973, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-29991595

RESUMEN

Bacterial flagella are rotary nanomachines that contribute to bacterial fitness in many settings, including host colonization. The flagellar motor relies on the multiprotein flagellar motor-switch complex to govern flagellum formation and rotational direction. Different bacteria exhibit great diversity in their flagellar motors. One such variation is exemplified by the motor-switch apparatus of the gastric pathogen Helicobacter pylori, which carries an extra switch protein, FliY, along with the more typical FliG, FliM, and FliN proteins. All switch proteins are needed for normal flagellation and motility in H. pylori, but the molecular mechanism of their assembly is unknown. To fill this gap, we examined the interactions among these proteins. We found that the C-terminal SpoA domain of FliY (FliYC) is critical to flagellation and forms heterodimeric complexes with the FliN and FliM SpoA domains, which are ß-sheet domains of type III secretion system proteins. Surprisingly, unlike in other flagellar switch systems, neither FliY nor FliN self-associated. The crystal structure of the FliYC-FliNC complex revealed a saddle-shaped structure homologous to the FliN-FliN dimer of Thermotoga maritima, consistent with a FliY-FliN heterodimer forming the functional unit. Analysis of the FliYC-FliNC interface indicated that oppositely charged residues specific to each protein drive heterodimer formation. Moreover, both FliYC-FliMC and FliYC-FliNC associated with the flagellar regulatory protein FliH, explaining their important roles in flagellation. We conclude that H. pylori uses a FliY-FliN heterodimer instead of a homodimer and creates a switch complex with SpoA domains derived from three distinct proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flagelos/química , Helicobacter pylori/química , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Sistemas de Secreción Tipo III/química , Cristalografía por Rayos X , Flagelos/ultraestructura , Proteínas de la Membrana , Complejos Multiproteicos/química , Dominios Proteicos
14.
J Biol Chem ; 292(41): 16880-16890, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-28842489

RESUMEN

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has developed multiple strategies to adapt to the human host. The five type VII secretion systems, ESX-1-5, direct the export of many virulence-promoting protein effectors across the complex mycobacterial cell wall. One class of ESX substrates is the PE-PPE family of proteins, which is unique to mycobacteria and essential for infection, antigenic variation, and host-pathogen interactions. The genome of Mtb encodes 168 PE-PPE proteins. Many of them are thought to be secreted through ESX-5 secretion system and to function in pairs. However, understanding of the specific pairing of PE-PPE proteins and their structure-function relationship is limited by the challenging purification of many PE-PPE proteins, and our knowledge of the PE-PPE interactions therefore has been restricted to the PE25-PPE41 pair and its complex with the ESX-5 secretion system chaperone EspG5. Here, we report the crystal structure of a new PE-PPE pair, PE8-PPE15, in complex with EspG5. Our structure revealed that the EspG5-binding sites on PPE15 are relatively conserved among Mtb PPE proteins, suggesting that EspG5-PPE15 represents a more typical model for EspG5-PPE interactions than EspG5-PPE41. A structural comparison with the PE25-PPE41 complex disclosed conformational changes in the four-helix bundle structure and a unique binding mode in the PE8-PPE15 pair. Moreover, homology-modeling and mutagenesis studies further delineated the molecular determinants of the specific PE-PPE interactions. These findings help develop an atomic algorithm of ESX-5 substrate recognition and PE-PPE pairing.


Asunto(s)
Proteínas Bacterianas/química , Mycobacterium tuberculosis/química , Sistemas de Secreción Tipo V/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad , Sistemas de Secreción Tipo V/genética , Sistemas de Secreción Tipo V/metabolismo
15.
Oncologist ; 23(11): 1273-1281, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30108157

RESUMEN

BACKGROUND: ß-amyloid precursor protein (APP), a potential target for Alzheimer's disease treatment, has recently been shown to take part in carcinogenesis. Increased APP promotes migration, survival, and proliferation in breast cancer cell lines. We examined the clinical value of APP in breast cancers. A comprehensive examination of clinicopathological features related to APP expression in a large cohort of breast cancers and the corresponding metastatic lymph nodes was performed. APP expression and its prognostic impact in different breast cancer subtypes were examined. RESULTS: APP was highly expressed in nonluminal breast cancers and correlated with features associated with nonluminal breast cancers (including higher grade, the presence of necrosis, and higher proliferative index, growth factor receptor, and basal marker expression). Multivariate Cox hazard analysis demonstrated that APP was an independent adverse prognostic factor of disease-free survival (DFS; hazard ratio [HR], 2.090; p = .013; 95% confidence interval [CI], 1.165-3.748) and breast cancer-specific survival (BCSS; HR, 2.631; p = .002; 95% CI, 1.408-4.915) in the nonluminal group. The independent prognostic impact was also seen in triple negative breast cancers. Interestingly, a higher expression of APP was found in nodal metastasis compared with primary tumor. Such APP upregulation was correlated with further distal metastasis and poorer outcome (DFS: log-rank, 12.848; p < .001; BCSS: log-rank, 13.947; p < .001). CONCLUSION: Our findings provided evidence of oncogenic roles of APP in clinical breast cancers. Patients with positive APP expression, particularly those with APP upregulation in lymph node metastases, may require vigilant monitoring of their disease and more aggressive therapy. IMPLICATIONS FOR PRACTICE: ß-amyloid precursor protein (APP), a potential target for Alzheimer's disease, has recently been implicated in oncogenesis. Here, evidence of its roles in clinical breast cancers is provided. Positive APP expression was found to be an independent prognostic factor in nonluminal cancers, particularly triple negative breast cancers (TNBCs). Interestingly, a higher APP in nodal metastases was associated with distal metastases. TNBCs are heterogeneous and currently have no available target therapy. APP could have therapeutic potential and be used to define the more aggressive cases in TNBCs. Current prognostic analysis is based on primary tumor. The present data suggest that investigation of nodal metastases could provide additional prognostic value.


Asunto(s)
Agresión/fisiología , Precursor de Proteína beta-Amiloide/efectos adversos , Neoplasias de la Mama/complicaciones , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/psicología , Femenino , Humanos , Persona de Mediana Edad , Pronóstico , Adulto Joven
16.
Biochem J ; 470(3): 303-17, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26188042

RESUMEN

Alzheimer's disease (AD) is a fatal neurodegenerative disease affecting 36 million people worldwide. Genetic and biochemical research indicate that the excessive generation of amyloid-ß peptide (Aß) from amyloid precursor protein (APP), is a major part of AD pathogenesis. FE65 is a brain-enriched adaptor protein that binds to APP. However, the role of FE65 in APP processing and the mechanisms that regulate binding of FE65 to APP are not fully understood. In the present study, we show that serum- and glucocorticoid-induced kinase 1 (SGK1) phosphorylates FE65 on Ser(610) and that this phosphorylation attenuates FE65 binding to APP. We also show that FE65 promotes amyloidogenic processing of APP and that FE65 Ser(610) phosphorylation inhibits this effect. Furthermore, we found that the effect of FE65 Ser(610) phosphorylation on APP processing is linked to a role of FE65 in metabolic turnover of APP via the proteasome. Thus FE65 influences APP degradation via the proteasome and phosphorylation of FE65 Ser(610) by SGK1 regulates binding of FE65 to APP, APP turnover and processing.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Células HEK293 , Humanos , Proteínas Inmediatas-Precoces/genética , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química
17.
FASEB J ; 28(1): 337-49, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24056087

RESUMEN

FE65 is an adaptor protein that binds to the amyloid precursor protein (APP). As such, FE65 has been implicated in the pathogenesis of Alzheimer's disease. In addition, evidence suggests that FE65 is involved in brain development. It is generally believed that FE65 participates in these processes by recruiting various interacting partners to form functional complexes. Here, we show that via its first phosphotyrosine binding (PTB) domain, FE65 binds to the small GTPase ADP-ribosylation factor 6 (ARF6). FE65 preferentially binds to ARF6-GDP, and they colocalize in neuronal growth cones. Interestingly, FE65 stimulates the activation of both ARF6 and its downstream GTPase Rac1, a regulator of actin dynamics, and functions in growth cones to stimulate neurite outgrowth. We show that transfection of FE65 and/or ARF6 promotes whereas small interfering RNA knockdown of FE65 or ARF6 inhibits neurite outgrowth in cultured neurons as compared to the mock-transfected control cells. Moreover, knockdown of ARF6 attenuates FE65 stimulation of neurite outgrowth and defective neurite outgrowth seen in FE65-deficient neurons is partially corrected by ARF6 overexpression. Notably, the stimulatory effect of FE65 and ARF6 on neurite outgrowth is abrogated either by dominant-negative Rac1 or knockdown of Rac1. Thus, we identify FE65 as a novel regulator of neurite outgrowth via controlling ARF6-Rac1 signaling.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Proteínas Nucleares/metabolismo , Factor 6 de Ribosilación del ADP , Animales , Células CHO , Células Cultivadas , Cricetulus , Inmunoprecipitación , Unión Proteica , Ratas , Técnicas del Sistema de Dos Híbridos
18.
Cell Mol Biol Lett ; 20(1): 66-87, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26204394

RESUMEN

FE65 is a brain-enriched, developmentally regulated adaptor protein that was first identified as a binding partner of amyloid precursor protein (APP), an important molecule in Alzheimer's disease. FE65 possesses three protein interaction domains, including an N-terminal WW domain and two C-terminal phosphotyrosine-binding (PTB) domains. It is capable of mediating the assembly of multimolecular complexes. Although initial work reveals its roles in APP processing and gene transactivation, increasing evidence suggests that FE65 participates in more diverse biological processes than originally anticipated. This article discusses the role of FE65 in signal transduction during cell stress and protein turnover through the ubiquitin-proteasome system and in various neuronal processes, including neurogenesis, neuronal migration and positioning, neurite outgrowth, synapse formation and synaptic plasticity, learning, and memory.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Proteínas Amiloidogénicas/metabolismo , Humanos , Dominios y Motivos de Interacción de Proteínas , Modificación Traduccional de las Proteínas , Transducción de Señal , Estrés Fisiológico
19.
J Med Genet ; 51(9): 590-5, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25062847

RESUMEN

BACKGROUND: Spinocerebellar ataxias (SCAs) are a group of clinically and genetically diverse and autosomal-dominant disorders characterised by neurological deficits in the cerebellum. At present, there is no cure for SCAs. Of the different distinct subtypes of autosomal-dominant SCAs identified to date, causative genes for only a fraction of them are currently known. In this study, we investigated the cause of an autosomal-dominant SCA phenotype in a family that exhibits cerebellar ataxia and pontocerebellar atrophy along with a global reduction in brain volume. METHODS AND RESULTS: Whole-exome analysis revealed a missense mutation c.G1391A (p.R464H) in the coding region of the coiled-coil domain containing 88C (CCDC88C) gene in all affected individuals. Functional studies showed that the mutant form of CCDC88C activates the c-Jun N-terminal kinase (JNK) pathway, induces caspase 3 cleavage and triggers apoptosis. CONCLUSIONS: This study expands our understanding of the cause of autosomal-dominant SCAs, a group of heterogeneous congenital neurological conditions in humans, and unveils a link between the JNK stress pathway and cerebellar atrophy.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Sistema de Señalización de MAP Quinasas/genética , Proteínas de Microfilamentos/genética , Mutación Missense/genética , Ataxias Espinocerebelosas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Encéfalo/diagnóstico por imagen , Análisis Mutacional de ADN , Exoma/genética , Hong Kong , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Imagen por Resonancia Magnética , Persona de Mediana Edad , Datos de Secuencia Molecular , Linaje , Radiografía , Ataxias Espinocerebelosas/patología
20.
Biochem J ; 464(3): 439-47, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25271362

RESUMEN

A number of viral gene products are capable of inducing apoptosis by interfering with various cellular signalling cascades. We previously reported the pro-apoptotic property of the SARS-CoV (severe acute respiratory syndrome coronavirus) M (membrane)-protein and a down-regulation of the phosphorylation level of the cell-survival protein PKB (protein kinase B)/Akt in cells expressing M-protein. We also showed that overexpression of PDK1 (3-phosphoinositide-dependent protein kinase 1), the immediate upstream kinase of PKB/Akt, suppressed M-induced apoptosis. This illustrates that M-protein perturbs the PDK1 and PKB/Akt cell survival signalling pathway. In the present study, we demonstrated that the C-terminus of M-protein interacts with the PH (pleckstrin homology) domain of PDK1. This interaction disrupted the association between PDK1 and PKB/Akt, and led to down-regulation of PKB/Akt activity. This subsequently reduced the level of the phosphorylated forkhead transcription factor FKHRL1 and ASK (apoptosis signal-regulating kinase), and led to the activation of caspases 8 and 9. Altogether, our data demonstrate that the SARS-CoV M-protein induces apoptosis through disrupting the interaction of PDK1 with PKB/Akt, and this causes the activation of apoptosis. Our work highlights that the SARS-CoV M protein is highly pro-apoptotic and is capable of simultaneously inducing apoptosis via initiating caspases 8 and 9. Preventing the interaction between M-protein and PDK1 is a plausible therapeutic approach to target the pro-apoptotic property of SARS-CoV.


Asunto(s)
Apoptosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de la Matriz Viral/metabolismo , Caspasas/metabolismo , Proteínas M de Coronavirus , Células HEK293 , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas de la Matriz Viral/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA