Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569471

RESUMEN

Antimicrobial photodynamic inactivation is considered a promising antimicrobial approach that may not develop resistance in the near future. Here, we investigate the influence of the photosensitizer chlorophyllin (CHL) and the cationic permeabilizer polyethylenimine (PEI), exposed to a red light-emitting diode, on the human pathogen Pseudomonas aeruginosa free-living planktonic cells, the sessile biofilm and persister cells. The broth microdilution checkerboard method was used to test antimicrobial susceptibility. As a substrate for biofilms, the Calgary biofilm device was used, and the quantification of the biofilm biomass was carried out using a crystal violet assay. Serine hydroxamate was used for the induction of persisters. Our findings reveal that PEI ameliorates the antimicrobial activity of CHL against P. aeruginosa planktonic and biofilm states, and the concentration required to eradicate the bacteria in the biofilm is more than fourfold that is required to eradicate planktonic cells. Interestingly, the persister cells are more susceptible to CHL/PEI (31.25/100 µg mL-1) than the growing cells by 1.7 ± 0.12 and 0.4 ± 0.1 log10 reduction, respectively, after 15 min of illumination. These data demonstrate that CHL excited with red light together with PEI is promising for the eradication of P. aeruginosa, and the susceptibility of P. aeruginosa to CHL/PEI is influenced by the concentrations and the exposure time.

2.
Expert Rev Proteomics ; 19(1): 43-59, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35037812

RESUMEN

INTRODUCTION: A long-term stay of humans in space causes health problems and changes in protists and plants. Deep space exploration will increase the time humans or rodents will spend in microgravity (µg). Moreover, they are exposed to cosmic radiation, hypodynamia, and isolation. OMICS investigations will increase our knowledge of the underlying mechanisms of µg-induced alterations in vivo and in vitro. AREAS COVERED: We summarize the findings over the recent 3 years on µg-induced changes in the proteome of protists, plants, rodent, and human cells. Considering the thematic orientation of microgravity-related publications in that time frame, we focus on medicine-associated findings, such as the µg-induced antibiotic resistance of bacteria, the myocardial consequences of µg-induced calpain activation, and the role of MMP13 in osteoarthritis. All these point to the fact that µg is an extreme stressor that could not be evolutionarily addressed on Earth. EXPERT OPINION: In conclusion, when interpreting µg-experiments, the direct, mostly unspecific stress response, must be distinguished from specific µg-effects. For this reason, recent studies often do not consider single protein findings but place them in the context of protein-protein interactions. This enables an estimation of functional relationships, especially if these are supported by epigenetic and transcriptional data (multi-omics).


Asunto(s)
Vuelo Espacial , Ingravidez , Humanos , Miocardio , Proteoma/genética
3.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269918

RESUMEN

Euglena gracilis is a photosynthetic flagellate. To acquire a suitable position in its surrounding aquatic environment, it exploits light and gravity primarily as environmental cues. Several physiological studies have indicated a fine-tuned relationship between gravity sensing (gravitaxis) and light sensing in E. gracilis. However, the underlying molecular mechanism is largely unknown. The photoreceptor photoactivated adenylyl cyclase (PAC) has been studied for over a decade. Nevertheless, no direct/indirect interaction partner (upstream/downstream) has been reported for PAC. It has been shown that a specific protein, kinase A (PKA), showed to be involved in phototaxis and gravitaxis. The current study reports the localization of the specific PKA and its relationship with PAC.


Asunto(s)
Euglena gracilis , Adenilil Ciclasas/metabolismo , Gravitación , Células Fotorreceptoras/metabolismo , Fototaxis
4.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208268

RESUMEN

Euglena gracilis (E. gracilis) is an attractive organism due to its evolutionary history and substantial potential to produce biochemicals of commercial importance. This study describes the establishment of an optimized protocol for the genetic transformation of E. gracilis mediated by Agrobacterium (A. tumefaciens). E. gracilis was found to be highly sensitive to hygromycin and zeocin, thus offering a set of resistance marker genes for the selection of transformants. A. tumefaciens-mediated transformation (ATMT) yielded hygromycin-resistant cells. However, hygromycin-resistant cells hosting the gus gene (encoding ß-glucuronidase (GUS)) were found to be GUS-negative, indicating that the gus gene had explicitly been silenced. To circumvent transgene silencing, GUS was expressed from the nuclear genome as transcriptional fusions with the hygromycin resistance gene (hptII) (encoding hygromycin phosphotransferase II) with the foot and mouth disease virus (FMDV)-derived 2A self-cleaving sequence placed between the coding sequences. ATMT of Euglena with the hptII-2A-gus gene yielded hygromycin-resistant, GUS-positive cells. The transformation was verified by PCR amplification of the T-DNA region genes, determination of GUS activity, and indirect immunofluorescence assays. Cocultivation factors optimization revealed that a higher number of transformants was obtained when A. tumefaciens LBA4404 (A600 = 1.0) and E. gracilis (A750 = 2.0) cultures were cocultured for 48 h at 19 °C in an organic medium (pH 6.5) containing 50 µM acetosyringone. Transformation efficiency of 8.26 ± 4.9% was achieved under the optimized cocultivation parameters. The molecular toolkits and method presented here can be used to bioengineer E. gracilis for producing high-value products and fundamental studies.


Asunto(s)
Agrobacterium tumefaciens/metabolismo , Biotecnología , Euglena gracilis/genética , Microalgas/genética , Técnicas de Transferencia Nuclear , Transformación Genética , Agrobacterium tumefaciens/efectos de los fármacos , Antibacterianos/farmacología , Cinamatos/farmacología , Células Clonales , ADN Bacteriano/genética , Euglena gracilis/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Genes Reporteros , Higromicina B/análogos & derivados , Higromicina B/farmacología , Microalgas/efectos de los fármacos , Mutagénesis Insercional/genética , Transformación Genética/efectos de los fármacos , Transgenes
5.
BMC Biol ; 17(1): 11, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30732613

RESUMEN

BACKGROUND: Photosynthetic euglenids are major contributors to fresh water ecosystems. Euglena gracilis in particular has noted metabolic flexibility, reflected by an ability to thrive in a range of harsh environments. E. gracilis has been a popular model organism and of considerable biotechnological interest, but the absence of a gene catalogue has hampered both basic research and translational efforts. RESULTS: We report a detailed transcriptome and partial genome for E. gracilis Z1. The nuclear genome is estimated to be around 500 Mb in size, and the transcriptome encodes over 36,000 proteins and the genome possesses less than 1% coding sequence. Annotation of coding sequences indicates a highly sophisticated endomembrane system, RNA processing mechanisms and nuclear genome contributions from several photosynthetic lineages. Multiple gene families, including likely signal transduction components, have been massively expanded. Alterations in protein abundance are controlled post-transcriptionally between light and dark conditions, surprisingly similar to trypanosomatids. CONCLUSIONS: Our data provide evidence that a range of photosynthetic eukaryotes contributed to the Euglena nuclear genome, evidence in support of the 'shopping bag' hypothesis for plastid acquisition. We also suggest that euglenids possess unique regulatory mechanisms for achieving extreme adaptability, through mechanisms of paralog expansion and gene acquisition.


Asunto(s)
Euglena gracilis/genética , Genoma , Proteoma , Transcriptoma , Núcleo Celular , Euglena gracilis/metabolismo , Plastidios
6.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317046

RESUMEN

All life forms have evolved under the constant force of gravity on Earth and developed ways to counterbalance acceleration load. In space, shear forces, buoyance-driven convection, and hydrostatic pressure are nullified or strongly reduced. When subjected to microgravity in space, the equilibrium between cell architecture and the external force is disturbed, resulting in changes at the cellular and sub-cellular levels (e.g., cytoskeleton, signal transduction, membrane permeability, etc.). Cosmic radiation also poses great health risks to astronauts because it has high linear energy transfer values that evoke complex DNA and other cellular damage. Space environmental conditions have been shown to influence apoptosis in various cell types. Apoptosis has important functions in morphogenesis, organ development, and wound healing. This review provides an overview of microgravity research platforms and apoptosis. The sections summarize the current knowledge of the impact of microgravity and cosmic radiation on cells with respect to apoptosis. Apoptosis-related microgravity experiments conducted with different mammalian model systems are presented. Recent findings in cells of the immune system, cardiovascular system, brain, eyes, cartilage, bone, gastrointestinal tract, liver, and pancreas, as well as cancer cells investigated under real and simulated microgravity conditions, are discussed. This comprehensive review indicates the potential of the space environment in biomedical research.


Asunto(s)
Apoptosis , Ingravidez/efectos adversos , Animales , Radiación Cósmica/efectos adversos , Humanos , Vuelo Espacial/normas
7.
Expert Rev Proteomics ; 16(1): 5-16, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30451542

RESUMEN

Introduction: Microgravity (µg) is an extreme stressor for plants, animals, and humans and influences biological systems. Humans in space experience various health problems during and after a long-term stay in orbit. Various studies have demonstrated structural alterations and molecular biological changes within the cellular milieu of plants, bacteria, microorganisms, animals, and cells. These data were obtained by proteomics investigations applied in gravitational biology to elucidate changes in the proteome occurring when cells or organisms were exposed to real µg (r-µg) and simulated µg (s-µg). Areas covered: In this review, we summarize the current knowledge about the impact of µg on the proteome in plants, animals, and human cells. The literature suggests that µg impacts the proteome and thus various biological processes such as angiogenesis, apoptosis, cell adhesion, cytoskeleton, extracellular matrix proteins, migration, proliferation, stress response, and signal transduction. The changes in cellular function depend on the respective cell type. Expert commentary: This data is important for the topics of gravitational biology, tissue engineering, cancer research, and translational regenerative medicine. Moreover, it may provide new ideas for countermeasures to protect the health of future space travelers.


Asunto(s)
Proteoma/análisis , Animales , Humanos , Espectrometría de Masas , Ingeniería de Tejidos , Ingravidez
8.
Adv Exp Med Biol ; 979: 125-140, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28429320

RESUMEN

Euglena gracilis is a major component of the aquatic ecosystem and together with closely related species, is ubiquitous worldwide. Euglenoids are an important group of protists, possessing a secondarily acquired plastid and are relatives to the Kinetoplastidae, which themselves have global impact as disease agents. To understand the biology of E. gracilis, as well as to provide further insight into the evolution and origins of the Kinetoplastidae, we embarked on sequencing the nuclear genome; the plastid and mitochondrial genomes are already in the public domain. Earlier studies suggested an extensive nuclear DNA content, with likely a high degree of repetitive sequence, together with significant extrachromosomal elements. To produce a list of coding sequences we have combined transcriptome data from both published and new sources, as well as embarked on de novo sequencing using a combination of 454, Illumina paired end libraries and long PacBio reads. Preliminary analysis suggests a surprisingly large genome approaching 2 Gbp, with a highly fragmented architecture and extensive repeat composition. Over 80% of the RNAseq reads from E. gracilis maps to the assembled genome sequence, which is comparable with the well assembled genomes of T. brucei and T. cruzi. In order to achieve this level of assembly we employed multiple informatics pipelines, which are discussed here. Finally, as a preliminary view of the genome architecture, we discuss the tubulin and calmodulin genes, which highlight potential novel splicing mechanisms.


Asunto(s)
Núcleo Celular , ADN Protozoario , Euglena gracilis/fisiología , Genoma de Protozoos/fisiología , Mitocondrias , Plastidios , Núcleo Celular/genética , Núcleo Celular/metabolismo , ADN Protozoario/genética , ADN Protozoario/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Plastidios/genética , Plastidios/metabolismo
9.
Expert Rev Proteomics ; 11(4): 465-76, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24957700

RESUMEN

Proteomics is performed in microgravity research in order to determine protein alterations occurring qualitatively and quantitatively, when single cells or whole organisms are exposed to real or simulated microgravity. To this purpose, antibody-dependent (Western blotting, flow cytometry, Luminex(®) technology) and antibody-independent (mass spectrometry, gene array) techniques are applied. The anticipated findings will help to understand microgravity-specific behavior, which has been observed in bacteria, as well as in plant, animal and human cells. To date, the analyses revealed that cell cultures are more sensitive to microgravity than cells embedded in organisms and that proteins changing under microgravity are highly interactive. Furthermore, one has to distinguish between primary gravity-induced and subsequent interaction-dependent changes of proteins, as well as between direct microgravity-related effects and indirect stress responses. Progress in this field will impact on tissue engineering and medicine and will uncover possibilities of counteracting alterations of protein expression at lowered gravity.


Asunto(s)
Proteómica/métodos , Vuelo Espacial , Ingravidez , Animales , Bacterias/química , Bacterias/citología , Línea Celular Tumoral , Humanos , Células Vegetales/química , Plantas/química
10.
Biomolecules ; 14(3)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38540747

RESUMEN

Age-dependent changes in the transcription levels of 5-day-old Euglena gracilis cells, which showed positive gravitaxis, 6-day-old cells without gravitactic orientation, and older cells (9- and 11-day-old, which displayed a precise negative gravitaxis) were determined through microarray analysis. Hierarchical clustering of four independent cell cultures revealed pronounced similarities in transcription levels at the same culture age, which proves the reproducibility of the cultivation method. Employing the non-oriented cells from the 6-day-old culture as a reference, about 2779 transcripts were found to be differentially expressed. While positively gravitactic cells (5-day-old culture) showed only minor differences in gene expression compared to the 6-day reference, pronounced changes of mRNAs (mainly an increase) were found in older cells compared to the reference culture. Among others, genes coding for adenylyl cyclases, photosynthesis, and metabolic enzymes were identified to be differentially expressed. The investigated cells were grown in batch cultures, so variations in transcription levels most likely account for factors such as nutrient depletion in the medium and self-shading. Based on these findings, a particular transcript (e.g., transcript 19556) was downregulated using the RNA interference technique. Gravitaxis and phototaxis were impaired in the transformants, indicating the role of this transcript in signal transduction. Results of the experiment are discussed regarding the increasing importance of E. gracilis in biotechnology as a source of valuable products and the possible application of E. gracilis in life-support systems.


Asunto(s)
Euglena gracilis , Euglena gracilis/genética , Reproducibilidad de los Resultados , Fototaxis , Fotosíntesis , Transducción de Señal
11.
Cells ; 12(7)2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-37048115

RESUMEN

Microgravity (µg) has a massive impact on the health of space explorers. Microgravity changes the proliferation, differentiation, and growth of cells. As crewed spaceflights into deep space are being planned along with the commercialization of space travelling, researchers have focused on gene regulation in cells and organisms exposed to real (r-) and simulated (s-) µg. In particular, cancer and metastasis research benefits from the findings obtained under µg conditions. Gene regulation is a key factor in a cell or an organism's ability to sustain life and respond to environmental changes. It is a universal process to control the amount, location, and timing in which genes are expressed. In this review, we provide an overview of µg-induced changes in the numerous mechanisms involved in gene regulation, including regulatory proteins, microRNAs, and the chemical modification of DNA. In particular, we discuss the current knowledge about the impact of microgravity on gene regulation in different types of bacteria, protists, fungi, animals, humans, and cells with a focus on the brain, eye, endothelium, immune system, cartilage, muscle, bone, and various cancers as well as recent findings in plants. Importantly, the obtained data clearly imply that µg experiments can support translational medicine on Earth.


Asunto(s)
MicroARNs , Vuelo Espacial , Ingravidez , Animales , Humanos , Regulación de la Expresión Génica , Diferenciación Celular , MicroARNs/genética
12.
Antibiotics (Basel) ; 11(10)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36290029

RESUMEN

Polyethylenimines (PEIs), a group of polycationic molecules, are known to impair the outer membrane of Gram-negative bacteria and exhibit antimicrobial activity. The outer membrane of Gram-negative strains hinders the uptake of photosensitizer chlorophyllin. In this study, we report chlorophyllin and branched PEI combinations' activity against Escherichia coli strains DH5α and RB791, Salmonella enterica sv. Typhimurium LT2, and Bacillus subtilis 168. The minimal bactericidal concentration (MBC) was determined by plating cells treated with different concentrations of PEI and chlorophyllin on agar and monitoring their growth after 24 h. All tested combinations of PEI and chlorophyllin were lethal for S. enterica after 240 min of incubation in light, whereas PEI alone (<100 µg mL−1) was ineffective. In the darkness, complete inhibition was noted with a combination of ≥2.5 µg mL−1 chlorophyllin and 50 µg mL−1 PEI. If applied alone, PEI alone of ≥800 µg mL−1 of PEI was required to completely inactivate E. coli DH5α cells in light, whereas with ≥5 µg mL−1 chlorophyllin, only ≥100 µg mL−1 PEI was needed. No effect was detected in darkness with PEI alone. However, 1600 µg mL−1 PEI in combination with 2.5 µg mL−1 resulted in complete inactivation after 4 h dark incubation. PEI alone did not inhibit E. coli strain RB791, while cells were inactivated when treated with 10 µg mL−1 chlorophyllin in combination with ≥100 µg mL−1 (in light) or ≥800 µg mL−1 PEI (in darkness). Under illumination, B. subtilis was inactivated at all tested concentrations. In the darkness, 1 µg mL−1 chlorophyllin and 12.5 µg mL−1 PEI were lethal for B. subtilis. Overall, PEI can be used as an antimicrobial agent or potentiating agent for ameliorating the antimicrobial activity of chlorophyllin.

13.
Planta ; 233(5): 1055-62, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21286747

RESUMEN

The unicellular flagellate Euglena gracilis shows positive phototaxis at low-light intensities (<10 W/m(2)) and a negative one at higher irradiances (>10 W/m(2)). Phototaxis is based on blue light-activated adenylyl cyclases, which produce cAMP upon irradiation. In the absence of light the cells swim upward in the water column (negative gravitaxis). The results of sounding rocket campaigns and of a large number of ground experiments led to the following model of signal perception and transduction in gravitaxis of E. gracilis: The body of the cell is heavier than the surrounding medium, sediments and thereby exerts a force onto the lower membrane. Upon deviation from a vertical swimming path mechano-sensitive ion channels are activated. Calcium is gated inwards which leads to an increase in the intracellular calcium concentration and causes a change of the membrane potential. After influx, calcium activates one of several calmodulins found in Euglena, which in turn activates an adenylyl cyclase (different from the one involved in phototaxis) to produce cAMP from ATP. One further element in the sensory transduction chain of both phototaxis and gravitaxis is a specific protein kinase A. We found five different protein kinases A in E. gracilis. The blockage of only one of these (PK.4, accession No. EU935859) by means of RNAi inhibited both phototaxis and gravitaxis, while inhibition of the other four affected neither phototaxis nor gravitaxis. It is assumed that cAMP directly activates this protein kinase A which may in turn phosphorylate a protein involved in the flagellar beating mechanism.


Asunto(s)
Adenilil Ciclasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Euglena gracilis/enzimología , Gravitropismo/fisiología , Fototropismo/fisiología , Secuencia de Bases , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Activación Enzimática , Euglena gracilis/efectos de los fármacos , Euglena gracilis/fisiología , Gravitropismo/efectos de los fármacos , Fototransducción , Locomoción/efectos de los fármacos , Locomoción/fisiología , Datos de Secuencia Molecular , Fotofosforilación , Fototropismo/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Estaurosporina/farmacología
14.
Expert Rev Proteomics ; 8(1): 13-27, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21329425

RESUMEN

For medical and biotechnological reasons, it is important to study mammalian cells, animals, bacteria and plants exposed to simulated and real microgravity. It is necessary to detect the cellular changes that cause the medical problems often observed in astronauts, cosmonauts or animals returning from prolonged space missions. In order for in vitro tissue engineering under microgravity conditions to succeed, the features of the cell that change need to be known. In this article, we summarize current knowledge about the effects of microgravity on the proteome in different cell types. Many studies suggest that the effects of microgravity on major cell functions depend on the responding cell type. Here, we discuss and speculate how and why the proteome responds to microgravity, focusing on proteomic discoveries and their future potential.


Asunto(s)
Proteoma/fisiología , Ingravidez , Animales , Astronautas , Bacterias/crecimiento & desarrollo , Línea Celular , Citoesqueleto/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/fisiología , Desarrollo de la Planta , Transducción de Señal/fisiología , Simulación del Espacio
15.
Parasitol Res ; 109(3): 781-6, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21448572

RESUMEN

Recently, it was demonstrated that mosquito larvae can be killed by means of photodynamic processes after the larvae have incorporated the photosensitizer chlorophyllin or pheophorbid, and were treated with light. The water-soluble substances were applied to and incorporated by the larvae in darkness. With Chaoborus sp. a dark incubation of about 3 h is sufficient to yield mortality of about 90% and ≥6 h resulted in almost 100% mortality during subsequent illumination. Temperature did not influence mortality of the larvae significantly in a treatment of 6 h dark incubation and subsequent 3 h illumination. At 10°C, 20°C, or 30°C, between 80% and 100% of the treated larvae died when the light intensity from a solar simulator was above 30 W/m(2). Lower irradiances were less effective. The LD(50) value of magnesium chlorophyllin was about 22.25 mg/l and for Zn chlorophyll 17.53 mg/l, while Cu chlorophyll (LD(50) 0.1 mg/l) was shown to be toxic also without light. Chlorophyllin, which was lyophilized immediately after extraction, was far more lethal to the larvae (LD(50) 14.88 mg/l) than air-dried Mg chlorophyllin.


Asunto(s)
Antiparasitarios/metabolismo , Clorofila/metabolismo , Dípteros/efectos de los fármacos , Ecosistema , Luz , Fármacos Fotosensibilizantes/metabolismo , Agua/parasitología , Animales , Oscuridad , Dípteros/metabolismo , Larva/efectos de los fármacos , Larva/metabolismo , Dosificación Letal Mediana , Análisis de Supervivencia , Temperatura , Factores de Tiempo
16.
Planta ; 231(5): 1229-36, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20213123

RESUMEN

The unicellular flagellate Euglena gracilis shows a negative gravitactic behavior. This is based on physiological mechanisms which in the past have been indirectly assessed. Meanwhile, it was possible to isolate genes involved in the signal transduction chain of gravitaxis. The DNA sequences of five calmodulins were found in Euglena, one of which was only known in its protein structure (CaM.1); the other four are new. The biosynthesis of the corresponding proteins of CaM.1-CaM.5 was inhibited by means of RNA interference to determine their involvement in the gravitactic signal transduction chain. RNAi of CaM.1 inhibits free swimming of the cells and pronounced cell-form aberrations. The division of cells was also hampered. After recovery from RNAi the cell showed precise negative gravitaxis again. Blockage of CaM.3 to CaM. 5 did not impair gravitaxis. In contrast, the blockage of CaM.2 has only a transient and not pronounced influence on motility and cell form, but leads to a total loss of gravitactic orientation for more than 30 days. This indicates that CaM.2 is an element in the signal transduction chain of gravitaxis in E. gracilis. The results are discussed with regard to the current working model of gravitaxis in E. gracilis.


Asunto(s)
Calmodulina/metabolismo , Euglena gracilis/fisiología , Sensación de Gravedad/fisiología , Proteínas Protozoarias/metabolismo , Transducción de Señal , Calmodulina/genética , Euglena gracilis/citología , Euglena gracilis/genética , Regulación de la Expresión Génica , Proteínas Protozoarias/genética , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Stem Cells Transl Med ; 9(8): 882-894, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32352658

RESUMEN

A spaceflight has enormous influence on the health of space voyagers due to the combined effects of microgravity and cosmic radiation. Known effects of microgravity (µg) on cells are changes in differentiation and growth. Considering the commercialization of spaceflight, future space exploration, and long-term manned flights, research focusing on differentiation and growth of stem cells and cancer cells exposed to real (r-) and simulated (s-) µg is of high interest for regenerative medicine and cancer research. In this review, we focus on platforms to study r- and s-µg as well as the impact of µg on cancer stem cells in the field of gastrointestinal cancer, lung cancer, and osteosarcoma. Moreover, we review the current knowledge of different types of stem cells exposed to µg conditions with regard to differentiation and engineering of cartilage, bone, vasculature, heart, skin, and liver constructs.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Madre Neoplásicas/metabolismo , Ingeniería de Tejidos/métodos , Ingravidez , Humanos
18.
Biotechnol Adv ; 43: 107572, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32540473

RESUMEN

Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.


Asunto(s)
Vuelo Espacial , Ingravidez , Adaptación Fisiológica , Agricultura , Estrés Fisiológico
19.
Trends Plant Sci ; 24(4): 291-293, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30827844

RESUMEN

In a recent publication, Edelmann (Protoplasma 2018; 255,1877-1881) refuted the well-established starch-amyloplast hypothesis of gravitropism in plants. Gravitropic curvatures of shoots and roots were still present after amyloplast-containing tissues (in sheath of vascular bundles and root caps) were dissected. Here, we discuss Edelmann's data in the light of Popper's falsification principle.


Asunto(s)
Arabidopsis , Almidón , Gravitropismo , Raíces de Plantas , Plastidios
20.
Antibiotics (Basel) ; 8(4)2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31547053

RESUMEN

Colistin (polymyxin E) is a membrane-destabilizing antibiotic used against Gram-negative bacteria. We have recently reported that the outer membrane prevents the uptake of antibacterial chlorophyllin into Gram-negative cells. In this study, we used sub-toxic concentrations of colistin to weaken this barrier for a combination treatment of Escherichia coli and Salmonella enterica serovar Typhimurium with chlorophyllin. In the presence of 0.25 µg/mL colistin, chlorophyllin was able to inactivate both bacteria strains at concentrations of 5-10 mg/L for E. coli and 0.5-1 mg/L for S. Typhimurium, which showed a higher overall susceptibility to chlorophyllin treatment. In accordance with a previous study, chlorophyllin has proven antibacterial activity both as a photosensitizer, illuminated with 12 mW/cm2, and in darkness. Our data clearly confirmed the relevance of the outer membrane in protection against xenobiotics. Combination treatment with colistin broadens chlorophyllin's application spectrum against Gram-negatives and gives rise to the assumption that chlorophyllin together with cell membrane-destabilizing substances may become a promising approach in bacteria control. Furthermore, we demonstrated that colistin acts as a door opener even for the photodynamic inactivation of colistin-resistant (mcr-1-positive) E. coli cells by chlorophyllin, which could help us to overcome this antimicrobial resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA