Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Genome Res ; 34(6): 967-978, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39038849

RESUMEN

The human gut microbiota is of increasing interest, with metagenomics a key tool for analyzing bacterial diversity and functionality in health and disease. Despite increasing efforts to expand microbial gene catalogs and an increasing number of metagenome-assembled genomes, there have been few pan-metagenomic association studies and in-depth functional analyses across different geographies and diseases. Here, we explored 6014 human gut metagenome samples across 19 countries and 23 diseases by performing compositional, functional cluster, and integrative analyses. Using interpreted machine learning classification models and statistical methods, we identified Fusobacterium nucleatum and Anaerostipes hadrus with the highest frequencies, enriched and depleted, respectively, across different disease cohorts. Distinct functional distributions were observed in the gut microbiomes of both westernized and nonwesternized populations. These compositional and functional analyses are presented in the open-access Human Gut Microbiome Atlas, allowing for the exploration of the richness, disease, and regional signatures of the gut microbiota across different cohorts.


Asunto(s)
Microbioma Gastrointestinal , Metagenoma , Metagenómica , Humanos , Microbioma Gastrointestinal/genética , Metagenómica/métodos , Aprendizaje Automático , Fusobacterium nucleatum/genética , Bacterias/clasificación , Bacterias/genética
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38622359

RESUMEN

Community cohesion plays a critical role in the determination of an individual's health in social science. Intriguingly, a community structure of gene networks indicates that the concept of community cohesion could be applied between the genes as well to overcome the limitations of single gene-based biomarkers for precision oncology. Here, we develop community cohesion scores which precisely quantify the community ability to retain the interactions between the genes and their cellular functions in each individualized gene network. Using breast cancer as a proof-of-concept study, we measure the community cohesion score profiles of 950 case samples and predict the individualized therapeutic targets in 2-fold. First, we prioritize them by finding druggable genes present in the community with the most and relatively decreased scores in each individual. Then, we pinpoint more individualized therapeutic targets by discovering the genes which greatly contribute to the community cohesion looseness in each individualized gene network. Compared with the previous approaches, the community cohesion scores show at least four times higher performance in predicting effective individualized chemotherapy targets based on drug sensitivity data. Furthermore, the community cohesion scores successfully discover the known breast cancer subtypes and we suggest new targeted therapy targets for triple negative breast cancer (e.g. KIT and GABRP). Lastly, we demonstrate that the community cohesion scores can predict tamoxifen responses in ER+ breast cancer and suggest potential combination therapies (e.g. NAMPT and RXRA inhibitors) to reduce endocrine therapy resistance based on individualized characteristics. Our method opens new perspectives for the biomarker development in precision oncology.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Redes Reguladoras de Genes , Medicina de Precisión , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Tamoxifeno/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Biomarcadores
3.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36579854

RESUMEN

MOTIVATION: Adverse drug reactions (ADRs) are a major issue in drug development and clinical pharmacology. As most ADRs are caused by unintended activity at off-targets of drugs, the identification of drug targets responsible for ADRs becomes a key process for resolving ADRs. Recently, with the increase in the number of ADR-related data sources, several computational methodologies have been proposed to analyze ADR-protein relations. However, the identification of ADR-related proteins on a large scale with high reliability remains an important challenge. RESULTS: In this article, we suggest a computational approach, Large-scale ADR-related Proteins Identification with Network Embedding (LAPINE). LAPINE combines a novel concept called single-target compound with a network embedding technique to enable large-scale prediction of ADR-related proteins for any proteins in the protein-protein interaction network. Analysis of benchmark datasets confirms the need to expand the scope of potential ADR-related proteins to be analyzed, as well as LAPINE's capability for high recovery of known ADR-related proteins. Moreover, LAPINE provides more reliable predictions for ADR-related proteins (Value-added positive predictive value = 0.12), compared to a previously proposed method (P < 0.001). Furthermore, two case studies show that most predictive proteins related to ADRs in LAPINE are supported by literature evidence. Overall, LAPINE can provide reliable insights into the relationship between ADRs and proteomes to understand the mechanism of ADRs leading to their prevention. AVAILABILITY AND IMPLEMENTATION: The source code is available at GitHub (https://github.com/rupinas/LAPINE) and Figshare (https://figshare.com/articles/software/LAPINE/21750245) to facilitate its use. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Reproducibilidad de los Resultados , Mapas de Interacción de Proteínas , Proteoma , Sistemas de Registro de Reacción Adversa a Medicamentos
4.
PLoS Comput Biol ; 19(5): e1011197, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37253056

RESUMEN

Luminal-A breast cancer is the most frequently occurring subtype which is characterized by high expression levels of hormone receptors. However, some luminal-A breast cancer patients suffer from intrinsic and/or acquired resistance to endocrine therapies which are considered as first-line treatments for luminal-A breast cancer. This heterogeneity within luminal-A breast cancer has required a more precise stratification method. Hence, our study aims to identify prognostic subgroups of luminal-A breast cancer. In this study, we discovered two prognostic subgroups of luminal-A breast cancer (BPS-LumA and WPS-LumA) using deep autoencoders and gene expressions. The deep autoencoders were trained using gene expression profiles of 679 luminal-A breast cancer samples in the METABRIC dataset. Then, latent features of each samples generated from the deep autoencoders were used for K-Means clustering to divide the samples into two subgroups, and Kaplan-Meier survival analysis was performed to compare prognosis (recurrence-free survival) between them. As a result, the prognosis between the two subgroups were significantly different (p-value = 5.82E-05; log-rank test). This prognostic difference between two subgroups was validated using gene expression profiles of 415 luminal-A breast cancer samples in the TCGA BRCA dataset (p-value = 0.004; log-rank test). Notably, the latent features were superior to the gene expression profiles and traditional dimensionality reduction method in terms of discovering the prognostic subgroups. Lastly, we discovered that ribosome-related biological functions could be potentially associated with the prognostic difference between them using differentially expressed genes and co-expression network analysis. Our stratification method can be contributed to understanding a complexity of luminal-A breast cancer and providing a personalized medicine.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Pronóstico , Análisis por Conglomerados , Transcriptoma/genética , Estimación de Kaplan-Meier , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
5.
BMC Bioinformatics ; 22(Suppl 11): 337, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34674631

RESUMEN

BACKGROUND: Concept recognition is a term that corresponds to the two sequential steps of named entity recognition and named entity normalization, and plays an essential role in the field of bioinformatics. However, the conventional dictionary-based methods did not sufficiently addressed the variation of the concepts in actual use in literature, resulting in the particularly degraded performances in recognition of multi-token concepts. RESULTS: In this paper, we propose a concept recognition method of multi-token biological entities using neural models combined with literature contexts. The key aspect of our method is utilizing the contextual information from the biological knowledge-bases for concept normalization, which is followed by named entity recognition procedure. The model showed improved performances over conventional methods, particularly for multi-token concepts with higher variations. CONCLUSIONS: We expect that our model can be utilized for effective concept recognition and variety of natural language processing tasks on bioinformatics.


Asunto(s)
Biología Computacional , Procesamiento de Lenguaje Natural , Publicaciones
6.
BMC Bioinformatics ; 21(Suppl 5): 250, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106154

RESUMEN

Biological contextual information helps understand various phenomena occurring in the biological systems consisting of complex molecular relations. The construction of context-specific relational resources vastly relies on laborious manual extraction from unstructured literature. In this paper, we propose COMMODAR, a machine learning-based literature mining framework for context-specific molecular relations using multimodal representations. The main idea of COMMODAR is the feature augmentation by the cooperation of multimodal representations for relation extraction. We leveraged biomedical domain knowledge as well as canonical linguistic information for more comprehensive representations of textual sources. The models based on multiple modalities outperformed those solely based on the linguistic modality. We applied COMMODAR to the 14 million PubMed abstracts and extracted 9214 context-specific molecular relations. All corpora, extracted data, evaluation results, and the implementation code are downloadable at https://github.com/jae-hyun-lee/commodar . CCS CONCEPTS: • Computing methodologies~Information extraction • Computing methodologies~Neural networks • Applied computing~Biological networks.


Asunto(s)
Minería de Datos/métodos , Aprendizaje Automático , PubMed , Publicaciones
7.
Bioinformatics ; 35(7): 1167-1173, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184045

RESUMEN

MOTIVATION: Essential gene signatures for cancer growth have been typically identified via RNAi or CRISPR-Cas9. Here, we propose an alternative method that reveals the essential gene signatures by analysing genomic expression profiles in compound-treated cells. With a large amount of the existing compound-induced data, essential gene signatures at genomic scale are efficiently characterized without technical challenges in the previous techniques. RESULTS: An essential gene is characterized as a gene presenting positive correlation between its down-regulation and cell growth inhibition induced by diverse compounds, which were collected from LINCS and CGP. Among 12 741 genes, 1092, 1 228 827 962, 1 664 580 and 829 essential genes are characterized for each of A375, A549, BT20, LNCAP, MCF7, MDAMB231 and PC3 cell lines (P-value ≤ 1.0E-05). Comparisons to the previously identified essential genes yield significant overlaps in A375 and A549 (P-value ≤ 5.0E-05) and the 103 common essential genes are enriched in crucial processes for cancer growth. In most comparisons in A375, MCF7, BT20 and A549, the characterized essential genes yield more essential characteristics than those of the previous techniques, i.e. high gene expression, high degrees of protein-protein interactions, many homologs and few paralogs. Remarkably, the essential genes commonly characterized by both the previous and proposed techniques show more significant essential characteristics than those solely relied on the previous techniques. We expect that this work provides new aspects in essential gene signatures. AVAILABILITY AND IMPLEMENTATION: The Python implementations are available at https://github.com/jmjung83/deconvolution_of_essential_gene_signitures. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genes Esenciales , Genómica , Neoplasias , Expresión Génica , Genómica/métodos , Humanos , Neoplasias/genética
8.
Molecules ; 25(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340247

RESUMEN

Red ginseng has been widely used in health-promoting supplements in Asia and is becoming increasingly popular in Western countries. However, its therapeutic mechanisms against most diseases have not been clearly elucidated. The aim of the present study was to provide the biological mechanisms of red ginseng against various metabolic diseases. We used a systems biological approach to comprehensively identify the component-target and target-pathway networks in order to explore the mechanisms underlying the therapeutic potential of red ginseng against metabolic diseases. Of the 23 components of red ginseng with target, 5 components were linked with 37 target molecules. Systematic analysis of the constructed networks revealed that these 37 targets were mainly involved in 9 signaling pathways relating to immune cell differentiation and vascular health. These results successfully explained the mechanisms underlying the efficiency of red ginseng for metabolic diseases, such as menopausal symptoms in women, blood circulation, diabetes mellitus, and hyperlipidemia.


Asunto(s)
Suplementos Dietéticos , Panax/química , Extractos Vegetales/farmacología , Biología de Sistemas/métodos , Animales , Biomarcadores , Bases de Datos Factuales , Susceptibilidad a Enfermedades , Humanos , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Estructura Molecular , Redes Neurales de la Computación , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Transducción de Señal
9.
BMC Bioinformatics ; 20(Suppl 10): 248, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31138123

RESUMEN

BACKGROUND: Computational analysis of complex diseases involving multiple organs requires the integration of multiple different models into a unified model. Different models are often constructed in heterogeneous formats. Thus, the integration of the models requires a standard language format that can effectively represent essential biological information. However, the previously introduced formats have limitations that prevent from adequately representing essential biological information, particularly specifications of bio-molecules and biological contexts. RESULTS: We defined an XML-based markup language called context-oriented directed association markup language (CODA-ML), which better represents essential biological information. The CODA-ML has two major strengths in designating molecular specifications and biological contexts. It can cover heterogeneous entity types involved in biological events (e.g. gene/protein, compound, cellular function, disease). Molecular types of entities can have molecular specifications which include detailed information of a molecule from isoforms to modifications, enabling high-resolution representation of molecules. In addition, it can distinguish biological events that vary depending on different biological contexts such as cell types or disease conditions. Especially representation of inter-cellular events as well as intra-cellular events is available. These two major strengths can resolve contradictory associations when different models are integrated into one unified model, which improves the accuracy of the model. CONCLUSIONS: With the CODA-ML, diverse models such as signaling pathways, metabolic pathways, and gene regulatory pathways can be represented in a unified language format. Heterogeneous entity types can be covered by the CODA-ML, thus it enables detailed description for the mechanisms of diseases or drugs from multiple perspectives (e.g., molecule, function or disease). The CODA-ML is expected to help integrate different models into one systemic model in an efficient and effective. The unified model can be used to perform computational analysis not only for cancer but also for other complex diseases involving multiple organs beyond a single cell.


Asunto(s)
Conocimiento , Fisiología , Programas Informáticos , Humanos , Lenguaje , Modelos Biológicos
10.
J Biomed Inform ; 94: 103182, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31009761

RESUMEN

There have been many attempts to identify relationships among concepts corresponding to terms from biomedical information ontologies such as the Unified Medical Language System (UMLS). In particular, vector representation of such concepts using information from UMLS definition texts is widely used to measure the relatedness between two biological concepts. However, conventional relatedness measures have a limited range of applicable word coverage, which limits the performance of these models. In this paper, we propose a concept-embedding model of a UMLS semantic relatedness measure to overcome the limitations of earlier models. We obtained context texts of biological concepts that are not defined in UMLS by utilizing Wikipedia as an external knowledgebase. Concept vector representations were then derived from the context texts of the biological concepts. The degree of relatedness between two concepts was defined as the cosine similarity between corresponding concept vectors. As a result, we validated that our method provides higher coverage and better performance than the conventional method.


Asunto(s)
Ontologías Biológicas , Semántica , Humanos , Procesamiento de Lenguaje Natural , Unified Medical Language System
11.
BMC Complement Altern Med ; 19(1): 212, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31412866

RESUMEN

BACKGROUND: Recently, there has been an increasing tendency to go back to nature in search of new medicines. To facilitate this, a great deal of effort has been made to compile information on natural products worldwide, and as a result, many ethnic-based traditional medicine databases have been developed. In Ethiopia, there are more than 80 ethnic groups, each having their indigenous knowledge on the use of traditional medicine. About 80% of the population uses traditional medicine for primary health care. Despite this, there is no structured online database for Ethiopian traditional medicine, which limits natural products based drug discovery researches using natural products from this country. DESCRIPTION: To develop ETM-DB, online research articles, theses, books, and public databases containing Ethiopian herbal medicine and phytochemicals information were searched. These resources were thoroughly inspected and the necessary data were extracted. Then, we developed a comprehensive online relational database which contains information on 1054 Ethiopian medicinal herbs with 1465 traditional therapeutic uses, 573 multi-herb prescriptions, 4285 compounds, 11,621 human target gene/proteins, covering 5779 herb-phenotype, 1879 prescription-herb, 16,426 herb-compound, 105,202 compound-phenotype, 162,632 compound-gene/protein, and 16,584 phenotype-gene/protein relationships. Using various cheminformatics tools, we obtained predicted physicochemical and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of ETM-DB compounds. We also evaluated drug-likeness properties of these compounds using FAF-Drugs4 webserver. From the 4285 compounds, 4080 of them passed the FAF-Drugs4 input data curation stage, of which 876 were found to have acceptable drug-likeness properties. CONCLUSION: ETM-DB is the largest, freely accessible, web-based integrated resource on Ethiopian traditional medicine. It provides traditional herbal medicine entities and their relationships in well-structured forms including reference to the sources. The ETM-DB website interface allows users to search the entities using various options provided by the search menu. We hope that our database will expedite drug discovery and development researches from Ethiopian natural products as it contains information on the chemical composition and related human target gene/proteins. The current version of ETM-DB is openly accessible at http://biosoft.kaist.ac.kr/etm .


Asunto(s)
Bases de Datos Factuales , Medicina de Hierbas , Medicinas Tradicionales Africanas , Extractos Vegetales/química , Plantas Medicinales/química , Bases de Datos Factuales/normas , Etiopía , Humanos , Extractos Vegetales/farmacología
12.
BMC Bioinformatics ; 19(Suppl 8): 213, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29897320

RESUMEN

BACKGROUND: Finding common molecular interactions from different samples is essential work to understanding diseases and other biological processes. Coexpression networks and their modules directly reflect sample-specific interactions among genes. Therefore, identification of common coexpression network or modules may reveal the molecular mechanism of complex disease or the relationship between biological processes. However, there has been no quantitative network comparison method for coexpression networks and we examined previous methods for other networks that cannot be applied to coexpression network. Therefore, we aimed to propose quantitative comparison methods for coexpression networks and to find common biological mechanisms between Huntington's disease and brain aging by the new method. RESULTS: We proposed two similarity measures for quantitative comparison of coexpression networks. Then, we performed experiments using known coexpression networks. We showed the validity of two measures and evaluated threshold values for similar coexpression network pairs from experiments. Using these similarity measures and thresholds, we quantitatively measured the similarity between disease-specific and aging-related coexpression modules and found similar Huntington's disease-aging coexpression module pairs. CONCLUSIONS: We identified similar Huntington's disease-aging coexpression module pairs and found that these modules are related to brain development, cell death, and immune response. It suggests that up-regulated cell signalling related cell death and immune/ inflammation response may be the common molecular mechanisms in the pathophysiology of HD and normal brain aging in the frontal cortex.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Envejecimiento/patología , Encéfalo/patología , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Reproducibilidad de los Resultados
13.
BMC Bioinformatics ; 19(Suppl 8): 205, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29897322

RESUMEN

BACKGROUND: Natural products have been widely investigated in the drug development field. Their traditional use cases as medicinal agents and their resemblance of our endogenous compounds show the possibility of new drug development. Many researchers have focused on identifying therapeutic effects of natural products, yet the resemblance of natural products and human metabolites has been rarely touched. METHODS: We propose a novel method which predicts therapeutic effects of natural products based on their similarity with human metabolites. In this study, we compare the structure, target and phenotype similarities between natural products and human metabolites to capture molecular and phenotypic properties of both compounds. With the generated similarity features, we train support vector machine model to identify similar natural product and human metabolite pairs. The known functions of human metabolites are then mapped to the paired natural products to predict their therapeutic effects. RESULTS: With our selected three feature sets, structure, target and phenotype similarities, our trained model successfully paired similar natural products and human metabolites. When applied to the natural product derived drugs, we could successfully identify their indications with high specificity and sensitivity. We further validated the found therapeutic effects of natural products with the literature evidence. CONCLUSIONS: These results suggest that our model can match natural products to similar human metabolites and provide possible therapeutic effects of natural products. By utilizing the similar human metabolite information, we expect to find new indications of natural products which could not be covered by previous in silico methods.


Asunto(s)
Productos Biológicos/farmacología , Clasificación/métodos , Metaboloma/efectos de los fármacos , Área Bajo la Curva , Productos Biológicos/química , Simulación por Computador , Humanos , Fenotipo , Curva ROC , Reproducibilidad de los Resultados
14.
Nucleic Acids Res ; 44(12): 5529-39, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27216817

RESUMEN

Hepatocellular carcinoma (HCC) has a high mortality rate and early detection of HCC is crucial for the application of effective treatment strategies. HCC is typically caused by either viral hepatitis infection or by fatty liver disease. To diagnose and treat HCC it is necessary to elucidate the underlying molecular mechanisms. As a major cause for development of HCC is fatty liver disease, we here investigated anomalies in regulation of lipid metabolism in the liver. We applied a tailored network-based approach to identify signaling hubs associated with regulation of this part of metabolism. Using transcriptomics data of HCC patients, we identified significant dysregulated expressions of lipid-regulated genes, across many different lipid metabolic pathways. Our findings, however, show that viral hepatitis causes HCC by a distinct mechanism, less likely involving lipid anomalies. Based on our analysis we suggest signaling hub genes governing overall catabolic or anabolic pathways, as novel drug targets for treatment of HCC that involves lipid anomalies.


Asunto(s)
Carcinoma Hepatocelular/genética , Metabolismo de los Lípidos/genética , Neoplasias Hepáticas/genética , Redes y Vías Metabólicas/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Transcriptoma/genética
15.
J Acoust Soc Am ; 143(6): 3455, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29960417

RESUMEN

The perceived sound clarity is often estimated with the clarity index, which is calculated on the basis of physical acoustic measures that can correlate weakly to the way humans perceive sound for certain test conditions. Therefore, this study proposes a clarity parameter based on a binaural room impulse response processed with a time-varying loudness model. The proposed parameter is validated by calculating the correlation coefficient with subject responses collected from previous listening experiments. Results show that the parameter outperforms the clarity index in most of the tested conditions, but its performance is less robust than parameter for clarity (PCLA).

16.
BMC Bioinformatics ; 18(Suppl 7): 250, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28617223

RESUMEN

BACKGROUND: Pandemic is a typical spreading phenomenon that can be observed in the human society and is dependent on the structure of the social network. The Susceptible-Infective-Recovered (SIR) model describes spreading phenomena using two spreading factors; contagiousness (ß) and recovery rate (γ). Some network models are trying to reflect the social network, but the real structure is difficult to uncover. METHODS: We have developed a spreading phenomenon simulator that can input the epidemic parameters and network parameters and performed the experiment of disease propagation. The simulation result was analyzed to construct a new marker VRTP distribution. We also induced the VRTP formula for three of the network mathematical models. RESULTS: We suggest new marker VRTP (value of recovered on turning point) to describe the coupling between the SIR spreading and the Scale-free (SF) network and observe the aspects of the coupling effects with the various of spreading and network parameters. We also derive the analytic formulation of VRTP in the fully mixed model, the configuration model, and the degree-based model respectively in the mathematical function form for the insights on the relationship between experimental simulation and theoretical consideration. CONCLUSIONS: We discover the coupling effect between SIR spreading and SF network through devising novel marker VRTP which reflects the shifting effect and relates to entropy.


Asunto(s)
Enfermedades Transmisibles/epidemiología , Algoritmos , Humanos , Modelos Teóricos , Método de Montecarlo
17.
J Acoust Soc Am ; 142(4): 1832, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29092554

RESUMEN

This study compared psychoacoustic reverberance parameters to each other, as well as to reverberation time (RT) and early decay time (EDT) under various acoustic conditions. The psychoacoustic parameters were loudness-based RT (TN), loudness-based EDT [EDTN; Lee, Cabrera, and Martens, J. Acoust. Soc. Am. 131, 1194-1205 (2012a)], and parameter for reverberance [PREV; van Dorp Schuitman, de Vries, and Lindau., J. Acoust. Soc. Am. 133, 1572-1585 (2013)]. For the comparisons, a wide range of sound pressure levels (SPLs) from 20 dB to 100 dB and RTs from 0.5 s to 5.0 s were evaluated, and two sets of subjective data from the previous studies were used for the cross-validation and comparison. Results of the comparisons show that the psychoacoustic reverberance parameters provided better matches to reverberance than RT and EDT; however, the performance of these psychoacoustic reverberance parameters varied with the SPL range, the type of audio sample, and the reverberation conditions. This study reveals that PREV is the most relevant for estimating a relative change in reverberance between samples when the SPL range is small, while EDTN is useful in estimating the absolute reverberance. This study also suggests the use of PREV and EDTN for speech and music samples, respectively.


Asunto(s)
Estimulación Acústica/métodos , Percepción Auditiva , Música , Psicoacústica , Sonido , Habla , Humanos , Percepción Sonora , Movimiento (Física) , Presión , Percepción del Habla , Factores de Tiempo , Vibración
18.
BMC Bioinformatics ; 17 Suppl 6: 219, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27490208

RESUMEN

BACKGROUND: Verifying the proteins that are targeted by compounds of natural herbs will be helpful to select natural herb-based drug candidates. However, this entails a great deal of effort to clarify the interaction throughout in vitro or in vivo experiments. In this light, in silico prediction of the interactions between compounds and target proteins can help ease the efforts. RESULTS: In this study, we performed in silico predictions of herbal compound target identification. First, data related to compounds, target proteins, and interactions between them are taken from the DrugBank database. Then we characterized six classes of compound-target interaction in humans including G-protein-coupled receptors (GPCRs), ion channel, enzymes, receptors, transporters, and other proteins. Also, classification-prediction models that predict the interactions between compounds and target proteins through a machine learning method were constructed using these matrices. As a result, AUC values of six classes are 0.94, 0.93, 0.90, 0.89, 0.91, and 0.76 respectively. Finally, the interactions of compounds from natural products were predicted using the constructed classification models. Furthermore, from our predicted results, we confirmed that several important disease related proteins were predicted as targets of natural herbal compounds. CONCLUSIONS: We constructed classification-prediction models that predict the interactions between compounds and target proteins. The constructed models showed good prediction performances, and numbers of potential natural compounds target proteins were predicted from our results.


Asunto(s)
Productos Biológicos/análisis , Simulación por Computador , Descubrimiento de Drogas , Plantas Medicinales/química , Modelos Químicos , Unión Proteica , Máquina de Vectores de Soporte
19.
BMC Bioinformatics ; 17 Suppl 6: 275, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27490093

RESUMEN

BACKGROUND: It is necessary to evaluate the efficacy of individual drugs on patients to realize personalized medicine. Testing drugs on patients in clinical trial is the only way to evaluate the efficacy of drugs. The approach is labour intensive and requires overwhelming costs and a number of experiments. Therefore, preclinical model system has been intensively investigated for predicting the efficacy of drugs. Current computational drug sensitivity prediction approaches use general biological network modules as their prediction features. Therefore, they miss indirect effectors or the effects from tissue-specific interactions. RESULTS: We developed cell line specific functional modules. Enriched scores of functional modules are utilized as cell line specific features to predict the efficacy of drugs. Cell line specific functional modules are clusters of genes, which have similar biological functions in cell line specific networks. We used linear regression for drug efficacy prediction. We assessed the prediction performance in leave-one-out cross-validation (LOOCV). Our method was compared with elastic net model, which is a popular model for drug efficacy prediction. In addition, we analysed drug sensitivity-associated functions of five drugs - lapatinib, erlotinib, raloxifene, tamoxifen and gefitinib- by our model. CONCLUSIONS: Our model can provide cell line specific drug efficacy prediction and also provide functions which are associated with drug sensitivity. Therefore, we could utilize drug sensitivity associated functions for drug repositioning or for suggesting secondary drugs for overcoming drug resistance.


Asunto(s)
Reposicionamiento de Medicamentos , Quimioterapia , Modelos Biológicos , Medicina de Precisión/métodos , Línea Celular , Evaluación Preclínica de Medicamentos , Humanos , Modelos Lineales
20.
BMC Bioinformatics ; 17: 386, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-27650402

RESUMEN

BACKGROUND: Plants are natural products that humans consume in various ways including food and medicine. They have a long empirical history of treating diseases with relatively few side effects. Based on these strengths, many studies have been performed to verify the effectiveness of plants in treating diseases. It is crucial to understand the chemicals contained in plants because these chemicals can regulate activities of proteins that are key factors in causing diseases. With the accumulation of a large volume of biomedical literature in various databases such as PubMed, it is possible to automatically extract relationships between plants and chemicals in a large-scale way if we apply a text mining approach. A cornerstone of achieving this task is a corpus of relationships between plants and chemicals. RESULTS: In this study, we first constructed a corpus for plant and chemical entities and for the relationships between them. The corpus contains 267 plant entities, 475 chemical entities, and 1,007 plant-chemical relationships (550 and 457 positive and negative relationships, respectively), which are drawn from 377 sentences in 245 PubMed abstracts. Inter-annotator agreement scores for the corpus among three annotators were measured. The simple percent agreement scores for entities and trigger words for the relationships were 99.6 and 94.8 %, respectively, and the overall kappa score for the classification of positive and negative relationships was 79.8 %. We also developed a rule-based model to automatically extract such plant-chemical relationships. When we evaluated the rule-based model using the corpus and randomly selected biomedical articles, overall F-scores of 68.0 and 61.8 % were achieved, respectively. CONCLUSION: We expect that the corpus for plant-chemical relationships will be a useful resource for enhancing plant research. The corpus is available at http://combio.gist.ac.kr/plantchemicalcorpus .


Asunto(s)
Minería de Datos/métodos , Fitoquímicos , Procesamiento de Lenguaje Natural , Plantas/química , PubMed
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA