Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nature ; 603(7902): 631-636, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35322249

RESUMEN

Metastable phases-kinetically favoured structures-are ubiquitous in nature1,2. Rather than forming thermodynamically stable ground-state structures, crystals grown from high-energy precursors often initially adopt metastable structures depending on the initial conditions, such as temperature, pressure or crystal size1,3,4. As the crystals grow further, they typically undergo a series of transformations from metastable phases to lower-energy and ultimately energetically stable phases1,3,4. Metastable phases sometimes exhibit superior physicochemical properties and, hence, the discovery and synthesis of new metastable phases are promising avenues for innovations in materials science1,5. However, the search for metastable materials has mainly been heuristic, performed on the basis of experiences, intuition or even speculative predictions, namely 'rules of thumb'. This limitation necessitates the advent of a new paradigm to discover new metastable phases based on rational design. Such a design rule is embodied in the discovery of a metastable hexagonal close-packed (hcp) palladium hydride (PdHx) synthesized in a liquid cell transmission electron microscope. The metastable hcp structure is stabilized through a unique interplay between the precursor concentrations in the solution: a sufficient supply of hydrogen (H) favours the hcp structure on the subnanometre scale, and an insufficient supply of Pd inhibits further growth and subsequent transition towards the thermodynamically stable face-centred cubic structure. These findings provide thermodynamic insights into metastability engineering strategies that can be deployed to discover new metastable phases.

2.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38913611

RESUMEN

Tracking of soil-dwelling insects poses greater challenges compared to aboveground-dwelling animals in terrestrial systems. A metal detector system consisting of a commercially available detector and aluminum tags was developed for detecting dung beetle, Copris ochus Motschulsky (Coleoptera: Scarabaeidae). First, detection efficacy of the system was evaluated by varying volumes of aluminum tags attached on a plastic model of the insect and also by varying angles. Then, detection efficacy was evaluated by varying depths of aluminum-tagged models under soil in 2 vegetation types. Finally, the effects of tag attachment on C. ochus adults were assessed for survivorship, burrowing depth, and horizontal movement. Generally, an increase in tag volume resulted in greater detection distance in semi-field conditions. Maximum detection distance of aluminum tag increased up to 17 cm below soil surface as the tag size (0.5 × 1.0 cm [width × length]) and thickness (16 layers) were maximized, resulting in a tag weight of 31.4 mg, comprising ca. 9% of average weight of C. ochus adult. Furthermore, the detection efficacy did not vary among angles except for 90°. In the field, metal detectors successfully detected 5 aluminum-tagged models in 20 × 10 m (W × L) arena within 10 min with detection rates ≥85% for up to depth of 10 cm and 45%-60% at depth of 20 cm. Finally, aluminum tagging did not significantly affect survivorship and behaviors of C. ochus. Our study indicates the potential of metal detector system for tracking C. ochus under soil.


Asunto(s)
Aluminio , Escarabajos , Animales , Aluminio/análisis , Suelo/química , Entomología/métodos , Entomología/instrumentación , Sistemas de Identificación Animal/instrumentación
3.
Phys Chem Chem Phys ; 25(6): 5203-5210, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36723101

RESUMEN

Finding a suitable material for hydrogen storage under ambient atmospheric conditions is challenging for material scientists and chemists. In this work, using a first principles based cluster expansion approach, the hydrogen storage capacity of the Ti2AC (A = Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, and Zn) MAX phase and its alloys was studied. We found that hydrogen is energetically stable in Ti-A layers in which the tetrahedral site consisting of one A atom and three Ti atoms is energetically more favorable for hydrogen adsorption than other sites in the Ti-A layer. Ti2CuC has the highest hydrogen adsorption energy than other Ti2AC phases. We find that the 83.33% Cu doped Ti2AlxCu1-xC alloy structure is both energetically and dynamically stable and can store 3.66 wt% hydrogen under ambient atmospheric conditions, which is higher than that stored by both Ti2AlC and Ti2CuC phases. These findings indicate that the hydrogen capacity of the MAX phase can be significantly improved by doping an appropriate atom species.

4.
Arch Insect Biochem Physiol ; 113(1): e22002, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36662511

RESUMEN

Outbreaks of Lymantria dispar asiatica (the Asian spongy moth; Lepidoptera: Erebidae) occur sporadically, causing widespread damage to forest and fruit trees. Owing to the development of pesticide resistance and environmental contamination, biopesticides, including L. dispar multiple nucleopolyhedrovirus (LdMNPV) and Bacillus thuringiensis var. kurstaki (Btk), can significantly contribute to controlling overall larval stage of this species. Although both pathogens are highly effective at the larval stage, their effects on different instar stages have not been investigated. In this study, we analyzed the mortality and lethality in different L. dispar asiatica instars exposed to single or combined pathogen treatments. Treatments with low or medium LdMNPV concentrations induced lower mortality and had higher LT50 values at the 4th and 5th instars compared with other instars, whereas high LdMNPV treatments induced high mortality in all instars, with higher LT50 values at later instars. Treatment with Btk induced a rapid 100% mortality in all instars, with higher LT50 values for the later instars. The combination of LdMNPV and Btk delayed the killing time compared with the effects of single treatments, with the effect being more pronounced in the 1st and 5th instar stage than at other stages at low Btk concentrations. Our findings indicate that the pathogenic effects of LdMNPV and Btk on L. dispar asiatica differ according to larval stage, thereby providing novel insights into enhancing the biological control efficacy of these agents against L. dispar asiatica in the field.


Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Nucleopoliedrovirus , Animales , Larva
5.
J Environ Manage ; 307: 114562, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091242

RESUMEN

Valorization of oil sludge has been gaining attention to improve the sustainability of the petroleum industry. This study aimed to assess the possibility of anaerobic co-digestion of oil scum and secondary sludge with food waste (or swine manure). Oil scum and secondary sludge were obtained from a wastewater treatment plant (WWTP) of a petrochemical plant. Physicochemical properties, hazardous materials, and microbial community were characterized and biochemical methane potential was performed by a simplex-lattice mixture design. More than 87% (wet wt.) of the oil scum consisted of total petroleum hydrocarbons (TPHs) (21,762 mg/L) that are difficult to be degraded by anaerobes. The secondary sludge showed low TPHs (5 mg/L) and a bacterial community similar to that of municipal WWTPs. The heavy metal (Cu, As, Cr, Ni, Mn, Zn, and V) concentrations in the oil scum and secondary sludge were similar (20-600 mg/L). The maximum methane potentials of the oil sludge and secondary sludges were 20 ± 2 and 56 ± 3 mL CH4/g-volatile solid, respectively. The co-digestion with food waste or swine manure led to a synergy effect on methane production of the co-digestion substrate (10-40% increase compared to the calculated value; v/v) by balancing the C/N ratio. Due to the high TPH contents, oil scum is not appropriate for co-digestion. The co-digestion of secondary sludge with food waste and/or swine manure is recommended. It is necessary to consider whether the concentration of heavy metals is at a level that inhibits the anaerobic co-digestion depending on the operating conditions such as mixing ratios and solid contents.


Asunto(s)
Petróleo , Eliminación de Residuos , Anaerobiosis , Animales , Biocombustibles/análisis , Reactores Biológicos , Digestión , Alimentos , Estiércol , Metano , Aguas del Alcantarillado , Porcinos
6.
Inorg Chem ; 59(17): 12733-12747, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32799455

RESUMEN

Metal borohydrides are a fascinating and continuously expanding class of materials, showing promising applications within many different fields of research. This study presents 17 derivatives of the hydrogen-rich ammonium borohydride, NH4BH4, which all exhibit high gravimetric hydrogen densities (>9.2 wt % of H2). A detailed insight into the crystal structures combining X-ray diffraction and density functional theory calculations exposes an intriguing structural variety ranging from three-dimensional (3D) frameworks, 2D-layered, and 1D-chainlike structures to structures built from isolated complex anions, in all cases containing NH4+ countercations. Dihydrogen interactions between complex NH4+ and BH4- ions contribute to the structural diversity and flexibility, while inducing an inherent instability facilitating hydrogen release. The thermal stability of the ammonium metal borohydrides, as a function of a range of structural properties, is analyzed in detail. The Pauling electronegativity of the metal, the structural dimensionality, the dihydrogen bond length, the relative amount of NH4+ to BH4-, and the nearest coordination sphere of NH4+ are among the most important factors. Hydrogen release usually occurs in three steps, involving new intermediate compounds, observed as crystalline, polymeric, and amorphous materials. This research provides new opportunities for the design and tailoring of novel functional materials with interesting properties.

7.
Inorg Chem ; 59(16): 11449-11458, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32799501

RESUMEN

Metal closo-borates have recently received significant attention due to their potential applications as solid-state ionic conductors. Here, the synthesis, crystal structures, and properties of (NH4)2B10H10·xNH3 (x = 1/2, 1 (α and ß)) and (NH4)2B12H12·xNH3 (x = 1 and 2) are reported. In situ synchrotron radiation powder X-ray diffraction allows for the investigation of structural changes as a function of temperature. The structures contain the complex cation N2H7+, which is rarely observed in solid materials, but can be important for proton conductivity. The structures are optimized by density functional theory (DFT) calculations to validate the structural models and provide detailed information about the hydrogen positions. Furthermore, the hydrogen dynamics of the complex cation N2H7+ are studied by molecular dynamics simulations, which reveals several events of a proton transfer within the N2H7+ units. The thermal properties are investigated by thermogravimetry and differential scanning calorimetry coupled with mass spectrometry, revealing that NH3 is released stepwise, which results in the formation of (NH4)2BnHn (n = 10 and 12) during heating. The proton conductivity of (NH4)2B12H12·xNH3 (x = 1 and 2) determined by electrochemical impedance spectroscopy is low but orders of magnitude higher than that of pristine (NH4)2B12H12. The thermal stability of the complex cation N2H7+ is high, up to 170 °C, which may provide new possible applications of these proton-rich materials.

8.
Inorg Chem ; 59(11): 7768-7778, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32395988

RESUMEN

Ammine metal borohydrides show potential for solid-state hydrogen storage and can be tailored toward hydrogen release at low temperatures. Here, we report the synthesis and structural characterization of seven new ammine metal borohydrides, M(BH4)3·nNH3, M = La (n = 6, 4, or 3) or Ce (n = 6, 5, 4, or 3). The two compounds with n = 6 are isostructural and have new orthorhombic structure types (space group P21212) built from cationic complexes, [M(NH3)6(BH4)2]+, and are charge balanced by BH4-. The structure of Ce(BH4)3·5NH3 is orthorhombic (space group C2221) and is built from cationic complexes, [Ce(NH3)5(BH4)2]+, and charge balanced by BH4-. These are rare examples of borohydride complexes acting both as a ligand and as a counterion in the same compound. The structures of M(BH4)3·4NH3 are monoclinic (space group C2), built from neutral molecular complexes of [M(NH3)4(BH4)3]. The new compositions, M(BH4)3·3NH3 (M = La, Ce), among ammine metal borohydrides, are orthorhombic (space group Pna21), containing molecular complexes of [M(NH3)3(BH4)3]. A revised structural model for A(BH4)3·5NH3 (A = Y, Gd, Dy) is presented, and the previously reported composition A(BH4)3·4NH3 (A = Y, La, Gd, Dy) is proposed in fact to be M(BH4)3·3NH3 along with a new structural model. The temperature-dependent structural properties and decomposition are investigated by in situ synchrotron radiation powder X-ray diffraction in vacuum and argon atmosphere and by thermal analysis combined with mass spectrometry. The compounds with n = 6, 5, and 4 mainly release ammonia at low temperatures, while hydrogen evolution occurs for M(BH4)3·3NH3 (M = La, Ce). Gas-release temperatures and gas composition from these compounds depend on the physical conditions and on the relative stability of M(BH4)3·nNH3 and M(BH4)3.

9.
Phys Chem Chem Phys ; 22(17): 9204-9209, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32232248

RESUMEN

Light weight and cheap electrolytes with fast multi-valent ion conductivity can pave the way for future high-energy density solid-state batteries, beyond the lithium-ion battery. Here we present the mechanism of Mg-ion conductivity of monoammine magnesium borohydride, Mg(BH4)2·NH3. Density functional theory calculations (DFT) reveal that the neutral molecule (NH3) in Mg(BH4)2·NH3 is exchanged between the lattice and interstitial Mg2+ facilitated by a highly flexible structure, mainly owing to a network of di-hydrogen bonds, N-Hδ+-δH-B and the versatile coordination of the BH4- ligand. DFT shows that di-hydrogen bonds in inorganic matter and hydrogen bonds in bio-materials have similar bond strengths and bond lengths. As a result of the high structural flexibiliy, the Mg-ion conductivity is dramatically improved at moderate temperature, e.g. σ(Mg2+) = 3.3 × 10-4 S cm-1 at T = 80 °C for Mg(BH4)2·NH3, which is approximately 8 orders of magnitude higher than that of Mg(BH4)2. Our results may inspire a new approach for the design and discovery of unprecedented multivalent ion conductors.

10.
Phys Chem Chem Phys ; 18(32): 22540-7, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27468702

RESUMEN

We have developed a fast solid state Li ion conductor composed of LiBH4 and SiO2 by means of interface engineering. A composite of LiBH4-SiO2 was simply synthesized by high energy ball-milling, and two types of SiO2 (MCM-41 and fumed silica) having different specific surface areas were used to evaluate the effect of the LiBH4/SiO2 interface on the ionic conductivity enhancement. The ionic conductivity of the ball-milled LiBH4-MCM-41 and LiBH4-fumed silica mixture is as high as 10(-5) S cm(-1) and 10(-4) S cm(-1) at room temperature, respectively. In particular, the conductivity of the latter is comparable to the LiBH4 melt-infiltrated into MCM-41. The conductivities of the LiBH4-fumed silica mixtures at different mixing ratios were analyzed employing a continuum percolation model, and the conductivity of the LiBH4/SiO2 interface layer is estimated to be 10(5) times higher than that of pure bulk LiBH4. The result highlights the importance of the interface and indicates that significant enhancement in ionic conductivity can be achieved via interface engineering.

11.
Exp Appl Acarol ; 68(4): 485-95, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26708137

RESUMEN

The acaricidal activity of Asarum heterotropoides root-derived principles, methyleugenol, safrole, 3-carene, α-asarone, pentadecane and A. heterotropoides root steam distillate constituents was tested against poultry red mites Dermanyssus gallinae (De Geer). All active principles were identified by spectroscopic analysis. Results were compared with those of two conventional acaricides, benzyl benzoate and N,N-diethyl-3-methylbenzamide (DEET). Methyleugenol (24 h LC50 = 0.57 µg/cm(2)) and safrole (24 h LC50 = 8.54 µg/cm(2)) were the most toxic compounds toward D. gallinae, followed by 3,4,5-trimethoxytoluene, 3,5-dimethoxytoluene, estragole, α-terpineol, verbenone, eucarvone, linalool, and terpinen-4-ol (LC50 = 15.65-27.88 µg/cm(2)). Methyleugenol was 16.7× and 11.0× more toxic than benzyl benzoate (LC50 = 9.52 µg/cm(2)) and DEET (LC50 = 6.28 µg/cm(2)), respectively; safrole was 1.1× and 0.73× more toxic. Asarum heterotropoides root-derived materials, particularly methyleugenol and safrole, merit further study as potential acaricides. Global efforts to reduce the level of highly toxic synthetic acaricides in indoor environments justify further studies on A. heterotropoides root extract and steam distillate preparations containing the active constituents described as potential contact-action fumigants for the control of mites.


Asunto(s)
Acaricidas , Asarum/química , Ácaros/efectos de los fármacos , Extractos Vegetales/farmacología , Acaricidas/química , Animales , Pollos/parasitología , Extractos Vegetales/química , Raíces de Plantas/química
12.
Inorg Chem ; 54(15): 7402-14, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26196159

RESUMEN

Fourteen solvent- and halide-free ammine rare-earth metal borohydrides M(BH4)3·nNH3, M = Y, Gd, Dy, n = 7, 6, 5, 4, 2, and 1, have been synthesized by a new approach, and their structures as well as chemical and physical properties are characterized. Extensive series of coordination complexes with systematic variation in the number of ligands are presented, as prepared by combined mechanochemistry, solvent-based methods, solid-gas reactions, and thermal treatment. This new synthesis approach may have a significant impact within inorganic coordination chemistry. Halide-free metal borohydrides have been synthesized by solvent-based metathesis reactions of LiBH4 and MCl3 (3:1), followed by reactions of M(BH4)3 with an excess of NH3 gas, yielding M(BH4)3·7NH3 (M = Y, Gd, and Dy). Crystal structure models for M(BH4)3·nNH3 are derived from a combination of powder X-ray diffraction (PXD), (11)B magic-angle spinning NMR, and density functional theory (DFT) calculations. The structures vary from two-dimensional layers (n = 1), one-dimensional chains (n = 2), molecular compounds (n = 4 and 5), to contain complex ions (n = 6 and 7). NH3 coordinates to the metal in all compounds, while BH4(-) has a flexible coordination, i.e., either as a terminal or bridging ligand or as a counterion. M(BH4)3·7NH3 releases ammonia stepwise by thermal treatment producing M(BH4)3·nNH3 (6, 5, and 4), whereas hydrogen is released for n ≤ 4. Detailed analysis of the dihydrogen bonds reveals new insight about the hydrogen elimination mechanism, which contradicts current hypotheses. Overall, the present work provides new general knowledge toward rational materials design and preparation along with limitations of PXD and DFT for analysis of structures with a significant degree of dynamics in the structures.

13.
Bioresour Technol ; 406: 131033, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925400

RESUMEN

In this study, Anaerobic Digestion Model No.1 (ADM1) was modified to incorporate changes in biochemical parameters due to solids retention time (SRT) variations. Cattle manure (CM) and thermally hydrolyzed CM were selected for testing. Continuous anaerobic digestion reactors were operated under different SRT conditions ranging from 6.6 to 36.0 days for both samples. The biochemical parameters (kch, kli, kpr, um,ac, um,bu, um,pro, um,va, Kac, Kbu, Kpro, and Kva) for each SRT condition were determined. To modify ADM1, the equations obtained through linear regression were substituted into biochemical parameters as a function of SRT. The modified ADM1 demonstrated superior accuracy compared with conventional ADM1. This study implies the feasibility of optimizing biochemical parameters for modeling in response to changes in environmental variables.

14.
Insects ; 15(6)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38921101

RESUMEN

Tropical and subtropical crops are being increasingly cultivated in South Korea, leading to an increase in damage by exotic insect pests. Consequently, ethyl formate (EF) is currently being considered for quarantine and pre-shipment fumigation. In this study, we evaluated the effectiveness of EF fumigation for controlling Aphis spiraecola Patch and Aphis gossypii Glover, two representative quarantine pests on passion fruit ("Pink Bourbon") during greenhouse cultivation and post-harvest storage. The efficacy of EF against both aphids in terms of the lethal concentration causing 50% mortality (LCt50%) and LCt99% was 1.36-2.61 g h/m3 and 3.73-7.55 g h/m3 under greenhouse conditions (23 °C), and 1.37-2.02 g h/m3 and 3.80-14.59 g h/m3 post-harvest (5 °C), respectively. EF at 4 g/m3 for 4 h resulted in 100% mortality of A. spiraecola, which was more resistant to EF, without causing phytotoxic damage to the trees in a 340 m3 greenhouse. Post-harvest fruit fumigation at 10 g/m3 for 4 h in a mid-size (0.8 m3) fumigation chamber resulted in complete disinfection. Moreover, the EF level decreased below the EF threshold within 10 min after natural ventilation in the greenhouse. Therefore, our results suggest EF fumigation as an effective method for controlling A. spiraecola and A. gossypii.

15.
Mater Horiz ; 11(1): 251-261, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37929607

RESUMEN

Solid electrolyte is a crucial component of all-solid-state batteries, with sulphide solid electrolytes such as lithium argyrodite being closest to commercialization due to their high ionic conductivity and formability. In this study, borohydride/halide dual-substituted argyrodite-type electrolytes, Li7-α-ßPS6-α-ß(BH4)αXß (X = Cl, Br, I; α + ß ≤ 1.8), have been synthesized using a two-step ball-milling method without post-annealing. Among the various compositions, Li5.35PS4.35(BH4)1.15Cl0.5 exhibits the highest ionic conductivity of 16.4 mS cm-1 at 25 °C when cold-pressed, which further improves to 26.1 mS cm-1 after low temperature sintering. The enhanced conductivity can be attributed to the increased number of Li vacancies resulting from increased BH4 and halide occupancy and site disorder. Li symmetric cells with Li5.35PS4.35(BH4)1.15Cl0.5 demonstrate stable Li plating and stripping cycling for over 2,000 hours at 1 mA cm-2, along with a high critical current density of 2.1 mA cm-2. An all-solid-state battery prepared using Li5.35PS4.35(BH4)1.15Cl0.5 as the electrolyte and pure Li as the anode exhibits an initial coulombic efficiency of 86.4%. Although these electrolytes have limited thermal stability, it shows a wide compositional range while maintaining high ionic conductivity.

16.
Environ Pollut ; 354: 124165, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38759749

RESUMEN

East Asian countries have been conducting source apportionment of fine particulate matter (PM2.5) by applying positive matrix factorization (PMF) to hourly constituent concentrations. However, some of the constituent data from the supersites in South Korea was missing due to instrument maintenance and calibration. Conventional preprocessing of missing values, such as exclusion or median replacement, causes biases in the estimated source contributions by changing the PMF input. Machine learning (ML) can estimate the missing values by training on constituent data, meteorological data, and gaseous pollutants. Complete data from the Seoul Supersite in 2018 was taken, and a random 20% was set as missing. PMF was performed by replacing missing values with estimates. Percent errors of the source contributions were calculated compared to those estimated from complete data. Missing values were estimated using a random forest analysis. Estimation accuracy (r2) was as high as 0.874 for missing carbon species and low at 0.631 when ionic species and trace elements were missing. For the seven highest contributing sources, replacing the missing values of carbon species with estimates minimized the percent errors to 2.0% on average. However, replacing the missing values of the other chemical species with estimates increased the percent errors to more than 9.7% on average. Percent errors were maximal at 37% on average when missing values of ionic species and trace elements were replaced with estimates. Missing values, except for carbon species, need to be excluded. This approach reduced the percent errors to 7.4% on average, which was lower than those due to median replacement. Our results show that reducing the biases in source apportionment is possible by replacing the missing values of carbon species with estimates. To improve the biases due to missing values of the other chemical species, the estimation accuracy of the ML needs to be improved.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Aprendizaje Automático , Material Particulado , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , República de Corea , Contaminación del Aire/estadística & datos numéricos
17.
Microsc Microanal ; 19 Suppl 5: 149-51, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23920195

RESUMEN

The microstructural analysis of the dehydrogenation products of the Ca(BH4)2-MgH2 composite was performed using transmission electron microscopy. It was found that nanocrystalline CaB6 crystallites formed as a dehydrogenation product throughout the areas where the signals of Ca and Mg were simultaneously detected, in addition to relatively coarse Mg crystallites. The uniform distribution of the nanocrystalline CaB6 crystallites appears to play a key role in the rehydrogenation of the dehydrogenation products, which implies that microstructure is a crucial factor determining the reversibility of reactive hydride composites.

18.
Heliyon ; 9(7): e17836, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37456061

RESUMEN

One of cosmopolitan pest, Agrotis ipsilon (Lepidoptera: Noctuidae), causes serious economic damages in horticultural crops. This pest is difficult to manage and causes irreversible damage because its larvae stay in the ground at day and cut the plant stems at night. Thus, this study compared the host fitness of A. ipsilon among nine major horticultural crops in Korea. Among the nine crops, the population of A. ipsilon failed to complete its development in spinach, cucumber, melon, and kidney bean. The host effects on development and reproduction of A. ipsilon were further investigated in the remained five crops (i.e., napa cabbage, soybean, perilla, corn, and pepper). Host plants significantly (P < 0.05) affected the development-related factors (i.e., developmental time, survivorship, and weight) of A. ipsilon eggs, larvae, and pupae. They also affected the adult reproduction-related factors including preoviposition period, oviposition period and number, and longevity except for the prepupa stage. A positive relationship was found between biological factors (i.e., development- and reproduction-related factors). Among the nine crops in this study, napa cabbage showed the highest suitability for the A. ipsilon populations. These findings in this study would be helpful to understand the ecology and develop the management tactics of A. ipsilon in horticultural crops.

19.
Environ Pollut ; 324: 121389, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870595

RESUMEN

Fine particulate matter (PM2.5) has been a pollutant of main interest globally for more than two decades, owing to its well-known adverse health effects. For developing effective management strategies for PM2.5, it is vital to identify its major sources and quantify how much they contribute to ambient PM2.5 concentrations. With the expanded monitoring efforts established during recent decades in Korea, speciated PM2.5 data needed for source apportionment of PM2.5 are now available for multiple sites (cities). However, many cities in Korea still do not have any speciated PM2.5 monitoring station, although quantification of source contributions for those cities is in great need. While there have been many PM2.5 source apportionment studies throughout the world for several decades based on monitoring data collected from receptor site(s), none of those receptor-oriented studies could predict unobserved source contributions at unmonitored sites. This study predicts source contributions of PM2.5 at unmonitored locations using a recently developed novel spatial multivariate receptor modeling (BSMRM) approach, which incorporates spatial correlation in data into modeling and estimation for spatial prediction of latent source contributions. The validity of BSMRM results is also assessed based on the data from a test site (city), not used in model development and estimation.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Teorema de Bayes , Material Particulado/análisis
20.
Adv Sci (Weinh) ; 10(5): e2204942, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36507619

RESUMEN

Compared with conventional liquid electrolytes, solid electrolytes can better improve the safety properties and achieve high-energy-density Li-ion batteries. Sulfide-based solid electrolytes have attracted significant attention owing to their high ionic conductivities, which are comparable to those of their liquid counterparts. Among them, Li thiophosphates, including Li-argyrodites, are widely studied. In this study, Li thiophosphate solid electrolytes containing BH4 - anions are prepared via a simple and fast milling method even without heat treatment. The synthesized materials exhibit a high ionic conductivity of up to 11 mS cm-1 at 25 °C, which is much higher than reported values. To elucidate the mechanism behind, the thiophosphate local structure, whose effect on the ionic conductivity remains unclear to date, is investigated. Raman and solid-state NMR spectroscopies are performed to identify the thiophosphate local structure in the sulfide samples. Based on the analysis results, the ratios of the different thiophosphate units in the prepared electrolyte samples are determined. It is found that the thiophosphate local structure can be varied by changing the amount of LiBH4 and the milling conditions, which significantly impact the ionic conductivity. The all-solid-state cell with the prepared solid electrolyte exhibits superior cycle and rate performances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA