Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Regul Toxicol Pharmacol ; 142: 105425, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37271419

RESUMEN

Consumer use of cannabidiol (CBD) for personal wellness purposes has garnered much public interest. However, safety-related data on CBD in the public domain are limited, including a lack of quality studies evaluating its genotoxic potential. The quality of available studies is limited due to the test material used (e.g., low CBD purity) and/or study design, leading some global regulatory agencies to highlight genotoxicity as an important data gap for CBD. To address this gap, the genotoxic potential of a pure CBD isolate was investigated in a battery of three genotoxicity assays conducted according to OECD testing guidelines. In an in vitro microbial reverse mutation assay, CBD up to 5000 µg/plate was negative in Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537, and Escherichia coli strain WP2 uvrA, with and without metabolic activation. Testing in an in vitro micronucleus assay was negative in human TK6 cells up to 10-11 µg/mL, with and without metabolic activation. Finally, an in vivo micronucleus assay conducted in male and female rats was negative for genotoxicity up to 1000 mg/kg-bw/d. Bioanalysis of CBD and its primary metabolite, 7-carboxy CBD, confirmed a dose-related increase in plasma exposure. Together, these assays indicate that CBD is unlikely to pose a genotoxic hazard.


Asunto(s)
Cannabidiol , Ratas , Masculino , Humanos , Femenino , Animales , Pruebas de Mutagenicidad , Cannabidiol/toxicidad , Pruebas de Micronúcleos , Salmonella typhimurium/genética , Daño del ADN , Escherichia coli/genética
2.
J Appl Toxicol ; 41(8): 1316-1329, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33269475

RESUMEN

Little is known about the uptake, biodistribution, and biological responses of nanoparticles (NPs) and their toxicity in developing animals. Here, male and female juvenile Sprague-Dawley rats received four consecutive daily doses of 10 mg/kg Al2 O3 NP (diameter: 24 nm [transmission electron microscope], hydrodynamic diameter: 148 nm) or vehicle control (water) by gavage between postnatal days (PNDs) 17-20. Basic neurobehavioral and cardiac assessments were performed on PND 20. Animals were sacrificed on PND 21, and selected tissues were collected, weighed, and processed for histopathology or neurotransmitter analysis. The biodistribution of Al2 O3 NP in tissue sections of the intestine, liver, spleen, kidney, and lymph nodes were evaluated using enhanced dark-field microscopy (EDM) and hyperspectral imaging (HSI). Liver-to-body weight ratio was significantly increased for male pups administered Al2 O3 NP compared with control. HSI suggested that Al2 O3 NP was more abundant in the duodenum and ileum tissue of the female pups compared with the male pups, whereas the abundance of NP was similar for males and females in the other tissues. The abundance of NP was higher in the liver compared with spleen, lymph nodes, and kidney. Homovanillic acid and norepinephrine concentrations in brain were significantly decreased following Al2 O3 NP administration in female and male pups, whereas 5-hydroxyindoleacetic acid was significantly increased in male pups. EDM/HSI indicates intestinal uptake of Al2 O3 NP following oral administration. Al2 O3 NP altered neurotransmitter/metabolite concentrations in juvenile rats' brain tissues. Together, these data suggest that orally administered Al2 O3 NP interferes with the brain biochemistry in both female and male pups.


Asunto(s)
Óxido de Aluminio/toxicidad , Corazón/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Neurotransmisores/metabolismo , Administración Oral , Óxido de Aluminio/administración & dosificación , Animales , Encéfalo/metabolismo , Electrocardiografía/efectos de los fármacos , Femenino , Masculino , Nanopartículas del Metal/administración & dosificación , Actividad Motora/efectos de los fármacos , Neurotransmisores/análisis , Ratas , Ratas Sprague-Dawley , Prueba de Desempeño de Rotación con Aceleración Constante , Distribución Tisular
3.
J Pharmacol Exp Ther ; 365(2): 437-446, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29549157

RESUMEN

Synthetic cannabinoids are a class of novel psychoactive substances that exhibit high affinity at the cannabinoid type-1 (CB1) receptor and produce effects similar to those of Δ-9-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis. Illicit drug manufacturers are continually circumventing laws banning the sale of synthetic cannabinoids by synthesizing novel structures and doing so with little regard for the potential impact on pharmacological and toxicological effects. Synthetic cannabinoids produce a wide range of effects that include cardiotoxicity, seizure activity, and kidney damage, and they can cause death. Six synthetic cannabinoids, recently detected in illicit preparations, MMB-FUBINACA, MDMB-FUBINACA, CUMYL-PICA, 5F-CUMYL-PICA, NNEI, and MN-18 were assessed for: 1) receptor binding affinity at the human CB1 and human CB2 receptors, 2) function in [35S]GTPγS and cAMP signaling, and 3) THC-like effects in a mouse drug discrimination assay. All six synthetic cannabinoids exhibited high affinity for human cannabinoid receptors type-1 and type-2 and produced greater maximal effects than THC in [35S]GTPγS and cAMP signaling. Additionally, all six synthetic cannabinoids substituted for THC in drug discrimination, suggesting they probably possess subjective effects similar to those of cannabis. Notably, MDMB-FUBINACA, a methylated analog of MMB-FUBINACA, had higher affinity for CB1 than the parent, showing that minor structural modifications being introduced can have a large impact on the pharmacological properties of these drugs. This study demonstrates that novel structures being sold and used illicitly as substitutes for cannabis are retaining high affinity at the CB1 receptor, exhibiting greater efficacy than THC, and producing THC-like effects in models relevant to subjective effects in humans.


Asunto(s)
1-Naftilamina/análogos & derivados , Cannabinoides/farmacología , Indazoles/farmacología , 1-Naftilamina/farmacología , Animales , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Drogas Ilícitas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Transducción de Señal/efectos de los fármacos , Valina/análogos & derivados , Valina/farmacología
4.
J Pharmacol Exp Ther ; 361(1): 162-171, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28087785

RESUMEN

Synthetic cannabinoids are manufactured clandestinely with little quality control and are distributed as herbal "spice" for smoking or as bulk compound for mixing with a solvent and inhalation via electronic vaporizers. Intoxication with synthetic cannabinoids has been associated with seizure, excited delirium, coma, kidney damage, and other disorders. The chemical alterations produced by heating these structurally novel compounds for consumption are largely unknown. Here, we show that heating synthetic cannabinoids containing tetramethylcyclopropyl-ring substituents produced thermal degradants with pharmacological activity that varied considerably from their parent compounds. Moreover, these degradants were formed under conditions simulating smoking. Some products of combustion retained high affinity at the cannabinoid 1 (CB1) and CB2 receptors, were more efficacious than (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55,940) in stimulating CB1 receptor-mediated guanosine 5'-O-(3-thiotriphosphate) (GTPγS) binding, and were potent in producing Δ9-tetrahydrocannabinol-like effects in laboratory animals, whereas other compounds had low affinity and efficacy and were devoid of cannabimimetic activity. Degradants that retained affinity and efficacy also substituted in drug discrimination tests for the prototypical synthetic cannabinoid 1-pentyl-3-(1-naphthoyl)indole (JWH-018), and are likely to produce psychotropic effects in humans. Hence, it is important to take into consideration the actual chemical exposures that occur during use of synthetic cannabinoid formulations to better comprehend the relationships between dose and effect.


Asunto(s)
Cannabinoides/metabolismo , Calor/efectos adversos , Indoles/metabolismo , Naftalenos/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Animales , Cannabinoides/síntesis química , Cannabinoides/farmacología , Drogas de Diseño/síntesis química , Drogas de Diseño/metabolismo , Drogas de Diseño/farmacología , Relación Dosis-Respuesta a Droga , Dronabinol/síntesis química , Dronabinol/metabolismo , Dronabinol/farmacología , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas
5.
Behav Pharmacol ; 27(5): 479-84, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27385208

RESUMEN

Incomplete overlap in the discriminative stimulus effects of Δ-tetrahydrocannabinol (THC) and the endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol has been reported in food-reinforced tasks. The aim of this study was to examine cannabinoid discriminative stimulus effects in a nonappetitive procedure. Adult male mice lacking the gene for AEA's major metabolic enzyme, fatty acid amide hydrolase (FAAH), and FAAH mice were trained to discriminate THC or AEA in a water T-maze, in which the response was swimming to an escape platform on the injection-appropriate side. JZL184, a monoacylglycerol lipase inhibitor, was also tested. FAAH mice showed faster acquisition than FAAH mice. THC and AEA fully substituted, with only minor cross-procedure potency variations. Incomplete substitution of JZL184 was observed in THC-trained FAAH mice in the water-maze task, as contrasted with full substitution in a food-reinforced nose-poke procedure. Stress-induced changes in AEA and/or 2-arachidonoylglycerol concentrations in the brain may have mediated this attenuation. JZL184 also partially substituted in AEA-trained FAAH mice in the water maze, suggesting incomplete overlap in the stimulus effects of AEA and JZL184. Through the use of a novel water-maze procedure, the present study supports the work of previous behavioral pharmacologists in showing the robustness of the discrimination paradigm.


Asunto(s)
Amidohidrolasas/genética , Ácidos Araquidónicos/farmacología , Dronabinol/farmacología , Endocannabinoides/farmacología , Glicéridos/farmacología , Alcamidas Poliinsaturadas/farmacología , Amidohidrolasas/metabolismo , Animales , Benzodioxoles/farmacología , Encéfalo/metabolismo , Discriminación en Psicología/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Piperidinas/farmacología , Agua
6.
J Pharmacol Exp Ther ; 354(3): 328-39, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26105953

RESUMEN

Diversion of synthetic cannabinoids for abuse began in the early 2000s. Despite legislation banning compounds currently on the drug market, illicit manufacturers continue to release new compounds for recreational use. This study examined new synthetic cannabinoids, AB-CHMINACA (N-[1-amino-3-methyl-oxobutan-2-yl]-1-[cyclohexylmethyl]-1H-indazole-3-carboxamide), AB-PINACA [N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide], and FUBIMINA [(1-(5-fluoropentyl)-1H-benzo[d]imadazol-2-yl)(naphthalen-1-yl)methanone], with the hypothesis that these compounds, like those before them, would be highly susceptible to abuse. Cannabinoids were examined in vitro for binding and activation of CB1 receptors, and in vivo for pharmacological effects in mice and in Δ(9)-tetrahydrocannabinol (Δ(9)-THC) discrimination. AB-CHMINACA, AB-PINACA, and FUBIMINA bound to and activated CB1 and CB2 receptors, and produced locomotor suppression, antinociception, hypothermia, and catalepsy. Furthermore, these compounds, along with JWH-018 [1-pentyl-3-(1-naphthoyl)indole], CP47,497 [rel-5-(1,1-dimethylheptyl)-2-[(1R,3S)-3-hydroxycyclohexyl]-phenol], and WIN55,212-2 ([(3R)-2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone, monomethanesulfonate), substituted for Δ(9)-THC in Δ(9)-THC discrimination. Rank order of potency correlated with CB1 receptor-binding affinity, and all three compounds were full agonists in [(35)S]GTPγS binding, as compared with the partial agonist Δ(9)-THC. Indeed, AB-CHMINACA and AB-PINACA exhibited higher efficacy than most known full agonists of the CB1 receptor. Preliminary analysis of urinary metabolites of the compounds revealed the expected hydroxylation. AB-PINACA and AB-CHMINACA are of potential interest as research tools due to their unique chemical structures and high CB1 receptor efficacies. Further studies on these chemicals are likely to include research on understanding cannabinoid receptors and other components of the endocannabinoid system that underlie the abuse of synthetic cannabinoids.


Asunto(s)
Cannabinoides/farmacología , Dronabinol/farmacología , Drogas Ilícitas/farmacología , Analgésicos/farmacología , Animales , Catalepsia/inducido químicamente , Endocannabinoides/metabolismo , Hidroxilación/efectos de los fármacos , Hipotermia/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Actividad Motora/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo
7.
Cannabis Cannabinoid Res ; 8(S1): S51-S61, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37721988

RESUMEN

Introduction: Minor cannabinoids are increasingly being consumed in oral formulations (i.e., edibles, tinctures) for medical and nonmedical purposes. This study examined the pharmacokinetics (PKs) of cannabinoids tetrahydrocannabivarin (THCV), cannabichromene (CBC), cannabinol (CBN), and delta-8-tetrahydrocannabinol (D8-THC) after the first and last oral dose during a 14-day administration period. Materials and Methods: Sprague-Dawley rats (N=6 animals/dose, 50% female) were given an assigned dose of one of four cannabinoids (THCV=3.2-100 mg/kg, CBC=3.2-100 mg/kg, CBN=1-100 mg/kg, or D8-THC=0.32-10 mg/kg) or vehicle (medium-chain triglyceride oil) through oral gavage once daily for 14 days. Blood was collected 45 min and 1.5, 3, and 24 h following the first dose (day 1) and the last dose (day 14) of repeated oral cannabinoid treatment for PK analysis. Outcomes of interest included time to maximum concentration (Tmax), maximum concentration (Cmax), and area under the concentration versus time curve (AUClast). Dose-normalized (DN) Cmax and DN AUClast were also calculated. Brain tissue was collected 24 h post-administration of the first (day 1) and the last (day 14) dose of each cannabinoid to determine concentrations in brain. Results: All cannabinoids tested were detectable in plasma after single and 14-day repeated dosing. DN Cmax and DN AUClast were highest for D8-THC, followed by CBC, CBN, and THCV. There was no sex difference observed in cannabinoid kinetics. Accumulation of D8-THC in plasma was observed after 14 days of administration. THCV levels in plasma were lower on day 14 compared to day 1, indicating potential adaptation of metabolic pathways and increased drug elimination. Cannabinoids were detected in brain tissue 24 h post-administration of the first and the last dose of 17-100 mg/kg THCV, 3.2-100 mg/kg CBC, 10-100 mg/kg CBN, and 10 mg/kg D8-THC. Conclusions: THCV, CBC, CBN, and D8-THC produced detectable levels in plasma and translocated to brain tissue after the first dose (day 1) and the last dose (day 14) of repeated oral dosing. Examination of PKs of these minor cannabinoids in blood and brain provides a critical step for informing target dose ranges and dosing schedules in future studies that evaluate the potential effects of these compounds.


Asunto(s)
Encéfalo , Plasma , Femenino , Ratas , Animales , Masculino , Ratas Sprague-Dawley , Cannabinol
8.
Cannabis Cannabinoid Res ; 8(S1): S25-S41, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37721989

RESUMEN

Introduction: Despite growing consumer interest and market availability, the safety of minor cannabinoids, generally present in low concentrations in Cannabis sativa L., is not well understood. Materials and Methods: Cannabichromene (CBC; 3.2, 10, 17, 22, 32, or 100 mg/kg-bw/day), cannabinol (CBN; 1, 3.2, 10, 17, 32, or 100 mg/kg-bw/day), delta-8-tetrahydrocannabinol (D8-THC; 0.32, 1, 3.2, or 10 mg/kg-bw/day), tetrahydrocannabivarin (THCV; 3.2, 10, 17, 22, 32, or 100 mg/kg-bw/day), and vehicle (medium-chain triglyceride oil) preparations were administered via oral gavage once daily for 14 days to Sprague Dawley rats. Changes in behavior, body weight, food consumption, clinical pathology, organ weights, body temperature, and thermal pain sensitivity (tail flick assay) were assessed. Select organ tissues were collected at terminal necropsy and fixed for histopathological examination. Results: No treatment-related deaths were observed throughout the study, and cannabinoids were generally well tolerated. While some significant trends in body weight differences from controls (increases and decreases) were observed, these occurred independently of food consumption. Overall, differences in serum chemistry and hematology parameters between cannabinoid groups and their respective control groups were considered to occur due to biological variation among rats. No treatment-related gross abnormalities were observed in examined organs. Significant changes in absolute and relative organ weights occurred primarily in males and were generally of negligible magnitude. There were no biologically significant histopathological observations. While pain tolerance was significantly improved in animals treated with D8-THC (3.2 and 10 mg/kg-bw/day, day 14), results across minor cannabinoids were inconsistent and warrant further study. Conclusion: Minor cannabinoids were well tolerated across 14 days of daily oral administration at the doses assessed. Modest, dose-dependent trends in relative organ weights and serum chemistry parameters warrant exploration at higher oral doses. These data will assist in dose selection for future studies investigating the long-term safety and effects of CBC, CBN, D8-THC, and THCV.


Asunto(s)
Cannabinol , Umbral del Dolor , Masculino , Ratas , Animales , Dimensión del Dolor , Ratas Sprague-Dawley , Administración Oral , Peso Corporal
9.
Cannabis Cannabinoid Res ; 8(S1): S42-S50, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37721992

RESUMEN

Introduction: Cannabis contains a multitude of phytocannabinoids and terpenes in addition to its main psychoactive constituent, delta-9-tetrahydrocannabinol (D9-THC). It is believed that the combination of minor cannabinoids and terpenes with D9-THC may impact the subjective and physiological effects of D9-THC. In this study, select minor cannabinoids (cannabigerol [CBG], cannabidivarin [CBDV], cannabichromene [CBC], tetrahydrocannabivarin [THCV], cannabigerolic acid [CBGa], and cannabidiolic acid [CBDa]) and terpenes (beta-caryophyllene and linalool) were evaluated for their potential to decrease the interoceptive effects of D9-THC using drug discrimination methods. Materials and Methods: Male and female rats (n=16; 50% female) were trained to discriminate D9-THC from vehicle. Following training, D9-THC was administered 45 min pre-session, followed by administration of a minor cannabinoid or terpene (or vehicle) 15 min pre-session. CBG, CBDV, CBC, and THCV were administered at doses of 3-30 mg/kg; CBGa and CBDa were administered at doses of 10-100 mg/kg; beta-caryophyllene and linalool were administered at doses of 10-30 mg/kg. Percentage of D9-THC responding (%) was calculated to assess changes to D9-THCs interoceptive effects. Results: CBG, CBDV, CBC, THCV, CBGa, CBDa, beta-caryophyllene, and linalool had little effect on percent D9-THC responding in either sex. No compounds lowered percent D9-THC responding to 50% or below. THCV, CBC, CBDa, and beta-caryophyllene in combination with D9-THC decreased response rates compared with D9-THC alone. Conclusions: The minor cannabinoids and terpenes examined in the current study did not alter the discriminative stimulus effects of D9-THC. These results suggest that these compounds are unlikely to lower the psychoactive effects of D9-THC in human users.


Asunto(s)
Dronabinol , Terpenos , Humanos , Femenino , Masculino , Animales , Ratas , Terpenos/farmacología , Dronabinol/farmacología , Excipientes
10.
Cannabis Cannabinoid Res ; 8(S1): S11-S24, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37721993

RESUMEN

Background: Cannabis and its primary psychoactive constituent delta-9-tetrahydrocannabinol (D9-THC) produce biphasic, dose-dependent effects on anxiety. In addition to D9-THC, cannabis contains other "minor" cannabinoids and terpenes with purported therapeutic potential for the treatment of anxiety. Empirical data on potential therapeutic effects of these compounds is limited. The current study evaluated the effects of selected minor cannabinoids and terpenes in a battery of tests sensitive to anxiolytic and anxiogenic drugs. Methods: In Experiment 1, adult male Sprague Dawley rats (N=7-8/group) were administered acute oral doses of one of five minor cannabinoids: delta-8-tetrahydrocannabinol (D8-THC; 10 mg/kg), tetrahydrocannabivarin (32 mg/kg), cannabidiolic acid (32 mg/kg), cannabidivarin (32 mg/kg), and cannabigerol (100 mg/kg), or one of five terpenes: D-limonene (17 mg/kg), ⍺-pinene (100 mg/kg), ⍺-terpineol (10 mg/kg), bisabolol (100 mg/kg), and ß-caryophyllene (17 mg/kg), or vehicle (medium-chain triglycerides [MCT] oil). Ethyl alcohol was tested as an active comparator. Thirty minutes post-administration, the marble burying test, the three-chamber social interaction test, and the novelty-induced hypophagia test were completed; motor activity was assessed throughout testing. Experiment 2 examined the potential anxiolytic effects of minor cannabinoids when administered chronically; rats administered MCT oil or minor cannabinoids in Experiment 1 continued receiving once-daily doses for 21 days and were assessed using the same test battery after 7, 14, and 21 days of administration. Results and Conclusions: When compared to vehicle, acute administration of bisabolol and D-limonene increased the amount of food consumed and bisabolol-, D-limonene-, ⍺-pinene-, and ß-caryophyllene decreased percent time spent in the outer zone in the novelty-induced hypophagia test, suggestive of an anxiolytic effect. Only ethanol increased social interaction. After acute administration, anxiogenic effects in the marble burying test were observed for D8-THC, but not for other minor cannabinoids and terpenes. Throughout chronic administration, only D8-THC displayed anxiogenic effects in the novelty-induced hypophagia test. The other cannabinoids did not show anxiolytic or anxiogenic effects in any of the tests at the doses or times tested. The minor cannabinoids and terpenes did not impair or stimulate general motor activity. These data provide a foundation for future studies investigating cannabinoid/terpene interactions.


Asunto(s)
Ansiolíticos , Cannabinoides , Cannabis , Alucinógenos , Masculino , Ratas , Animales , Terpenos/farmacología , Ansiolíticos/farmacología , Limoneno , Ratas Sprague-Dawley , Agonistas de Receptores de Cannabinoides , Administración Oral , Trementina , Carbonato de Calcio , Cannabinoides/farmacología
11.
Food Chem Toxicol ; 176: 113786, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37105390

RESUMEN

An important data gap in determining a safe level of cannabidiol (CBD) intake for consumer use is determination of CBD's potential to cause reproductive or developmental toxicity. We conducted an OECD Test Guideline 421 GLP-compliant study in rats, with extended postnatal dosing and hormone analysis, where hemp-derived CBD isolate (0, 30, 100, or 300 mg/kg-bw/d) was administered orally. Treatment-related mortality, moribundity, and decreased body weight and food consumption were observed in high-dose F0 adult animals, consistent with severe maternal toxicity. No effects were observed on testosterone concentrations, F0 reproductive performance, or reproductive organs. Hepatocellular hypertrophy in the 100- and 300 mg/kg-bw/day groups correlated with hypertrophy/hyperplasia in the thyroid gland and changes in mean thyroid hormone concentrations in F0 animals. Mean gestation length was unaffected; however, total litter loss for two females and dystocia for two additional females in the high-dose group occurred. Other developmental effects were limited to lower mean pup weights in the 300 mg/kg-bw/d group compared to those of concurrent controls. The following NOAELs were identified for CBD isolate based on this study: 100 mg/kg-bw/d for F0 systemic toxicity and female reproductive toxicity, 300 mg/kg-bw/d for F0 male reproductive toxicity, and 100 mg/kg-bw/d for F1 neonatal and F1 generation toxicity.


Asunto(s)
Cannabidiol , Embarazo , Ratas , Femenino , Masculino , Animales , Cannabidiol/toxicidad , Reproducción , Testosterona , Glándula Tiroides , Nivel sin Efectos Adversos Observados , Peso Corporal
12.
Food Chem Toxicol ; 176: 113778, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37105391

RESUMEN

Use of cannabidiol (CBD) in humans has increased considerably in recent years. While currently available studies suggest that CBD is relatively safe for human consumption, data from publicly available studies on CBD conducted according to modern testing guidelines are lacking. In the current study, the potential for toxicity following repeated oral exposure to hemp-derived CBD isolate was evaluated in male and female Sprague Dawley rats. No adverse treatment-related effects were observed following administration of CBD via oral gavage for 14 and 90 days at concentrations up to 150 and 140 mg/kg-bw/d, respectively. Microscopic liver and adrenal gland changes observed in the 90-day study were determined to be resolved after a 28-day recovery period. CBD was well tolerated at these dose levels, and the results of this study are comparable to findings reported in unpublished studies conducted with other CBD isolates. The current studies were conducted as part of a broader research program to examine the safety of CBD.


Asunto(s)
Cannabidiol , Cannabis , Ratas , Animales , Masculino , Humanos , Femenino , Cannabidiol/toxicidad , Ratas Sprague-Dawley , Cannabis/toxicidad , Administración Oral
13.
Artículo en Inglés | MEDLINE | ID: mdl-32810571

RESUMEN

Cannabis edibles are becoming more common in an increasingly diverse population of users, and the impact of first pass metabolism on cannabis's pharmacological profile across age and sex is not well understood. The present study examined the impact of age, sex and rodent species on the effects of intraperitoneal (i.p.) delta-9-tetrahydrocannabinol (THC) and its primary psychoactive metabolite, 11-OH-THC, in rodent models of psychoactivity and molecular assays of cannabinoid receptor type-1 (CB1) pharmacology. Like oral THC, i.p. THC also undergoes first pass metabolism. In both species and sexes, 11-OH-THC exhibited marginally higher affinity (~1.5 fold) than THC and both served as partial agonists in [35S]GTPγS binding with equivalent potency; 11-OH-THC exhibited slightly greater efficacy in rat brain tissue. In ICR mice, 11-OH-THC exhibited greater potency than THC in assays of catalepsy (7- to 15-fold) and hypothermia (7- to 31-fold). Further, 11-OH-THC was more potent in THC drug discrimination (7- to 9-fold) in C57Bl/6 J mice, with THC-like discriminative stimulus effects being CB1-, but not CB2-, mediated. THC's discriminative stimulus also was stable across age in mice, as its potency did not change over the course of the experiment (~17 months). While sex differences in THC's effects were not revealed in mice, THC was significantly more potent in females Sprague-Dawley rats than in males trained to discriminate THC from vehicle. This study demonstrates a cross-species in the psychoactive effects of i.p. THC across sex that may be related to differential metabolism of THC into its psychoactive metabolite 11-OH-THC, suggesting that species is a crucial design consideration in the preclinical study of phytocannabinoids.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Aprendizaje Discriminativo/efectos de los fármacos , Dronabinol/farmacología , Tiempo de Reacción/efectos de los fármacos , Receptor Cannabinoide CB1/agonistas , Caracteres Sexuales , Factores de Edad , Animales , Agonistas de Receptores de Cannabinoides/metabolismo , Aprendizaje Discriminativo/fisiología , Relación Dosis-Respuesta a Droga , Dronabinol/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/fisiología , Receptor Cannabinoide CB1/metabolismo , Roedores , Especificidad de la Especie
14.
Cannabis Cannabinoid Res ; 6(6): 522-527, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33998871

RESUMEN

Introduction: Despite widespread use of cannabidiol (CBD), no lifelong toxicity study has been published to date. Caenorhabditis elegans is often used in preclinical lifelong toxicity studies, due to an estimated 60-80% of their genes having a human ortholog, and their short lifespan of ∼2-3 weeks. In this study, we examined both acute and long-term exposure studies of CBD at physiologically relevant concentrations. Materials and Methods: Acute toxicity was determined by treating day 1 adults with a wide range of CBD concentrations (0.4 µM to 4 mM) and assessing mortality and motility compared to control animals. Thermotolerance was examined by treating adult animals with CBD (0.4 µM to 4 mM) and exposing them to 37°C for 4 h, and then scoring for the number of alive animals treated with CBD compared to controls. Long-term toxicity was assessed by exposing day 1 adults to 10, 40, and 100 µM CBD until all animals perished. Control animals had no active drug exposure. Results: We report both acute and long-term exposure studies of CBD to adult C. elegans at physiologically relevant concentrations. Acute toxicity results showed that no animal died when exposed to 0.4-4000 µM CBD. The thermotolerance study showed that 40 µM CBD, but not other treatment levels, significantly increased resistance to heat stress by 141% compared to the untreated controls. Notably, whole-life exposure of C. elegans to 10-100 µM CBD revealed a maximum life extension of 18% observed at 40 µM CBD. In addition, motility analysis of the same groups revealed an increase in late-stage life activity by up to 206% compared to controls. Conclusion: These results serve as the only CBD lifelong exposure data in an in vivo model to date. While further research into the lifelong use of CBD should be carried out in mammalian models, the C. elegans model indicates a lack of long-term toxicity at physiologically relevant concentrations.


Asunto(s)
Cannabidiol , Termotolerancia , Animales , Caenorhabditis elegans , Cannabidiol/toxicidad , Humanos , Longevidad
15.
Pharmacol Biochem Behav ; 193: 172918, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32247816

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) possess high abuse liability and complex toxicological profiles, making them serious threats to public health. EG-018 is a SCRA that has been detected in both illicit products and human samples, but it has received little attention to date. The current studies investigated EG-018 at human CB1 and CB2 receptors expressed in HEK293 cells in [3H]CP55,940 competition binding, [35S]GTPγS binding and forskolin-stimulated cAMP production. EG-018 was also tested in vivo for its ability to produce cannabimimetic and abuse-related effects in the cannabinoid tetrad and THC drug discrimination, respectively. EG-018 exhibited high affinity at CB1 (21 nM) and at CB2 (7 nM), but in contrast to typical SCRAs, behaved as a weak partial agonist in [35S]GTPγS binding, exhibiting lower efficacy but greater potency, than that of THC at CB1 and similar potency and efficacy at CB2. EG-018 inhibited forskolin-stimulated cAMP with similar efficacy but lower potency, compared to THC, which was likely due to high receptor density facilitating saturation of this signaling pathway. In mice, EG-018 (100 mg/kg, 30 min) administered intraperitoneally (i.p.) did not produce effects in the tetrad or drug discrimination nor did it shift THC's ED50 value in drug discrimination when administered before THC, suggesting EG-018 has negligible occupancy of brain CB1 receptors following i.p. administration. Following intravenous (i.v.) administration, EG-018 (56 mg/kg) produced hypomotility, catalepsy, and hypothermia, but only catalepsy was blocked by the selective CB1 antagonist rimonabant (3 mg/kg, i.v.). Additional studies of EG-018 and its structural analogues could provide further insight into how cannabinoids exert efficacy through the cannabinoid receptors.


Asunto(s)
Conducta Animal/efectos de los fármacos , Temperatura Corporal/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/farmacocinética , Carbazoles/farmacocinética , Locomoción/efectos de los fármacos , Microsomas/efectos de los fármacos , Naftalenos/farmacocinética , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas , Transducción de Señal/efectos de los fármacos , Drogas Sintéticas/farmacocinética , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Carbazoles/farmacología , AMP Cíclico/metabolismo , Dronabinol/farmacología , Células HEK293 , Humanos , Hígado/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Naftalenos/farmacología , Ratas , Ratas Long-Evans , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Drogas Sintéticas/metabolismo
16.
Neurotoxicology ; 73: 161-167, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30953678

RESUMEN

A recent push to provide more translationally relevant preclinical models for examination of pharmacological mechanisms underlying inhaled substances of abuse has resulted in the development of equipment and methods that allows exposure of freely moving rodents to aerosolized psychoactive drugs. In the present study, synthetic cannabinoids (CP55,940, AB-CHMINACA, and AMB-FUBINACA) were administered intraperitoneally (i.p.) or aerosolized via a modified electronic cigarette device. Subsequently, the compounds were evaluated in adult male and female C57/Bl6 mice trained to discriminate i.p. 5.6 mg/kg Δ9-tetrahydrocannabinol (THC) for food reinforcement. When administered i.p., THC and AB-CHMINACA were equally potent at producing THC-like effects in both sexes, but CP55,940 and AMB-FUBINACA were more potent in males. Upon aerosol exposure, all compounds continued to produce THC-like effects in both sexes, with AMB-FUBINACA remaining the most potent. In contrast, aerosolized CP55,940 showed substantial decreases in potency in both sexes. Aerosolized nicotine did not substitute for THC in either sex. In females, aerosolized cumyl-4CN-BINACA produced concentration-dependent increases in responding on the THC-associated nosepoke. In addition, the effects of an active concentration of AMB-FUBINACA were reversed by rimonabant, suggesting CB1 receptor mediation. These results show that synthetic cannabinoids produce THC-like effects when injected i.p. or after aerosolization. This study adds to a growing literature suggesting that evaluation of abuse liability of substances via aerosol exposure is feasible and may provide a translationally relevant method that allows for investigation of factors important to the abuse of drugs which humans typically smoke or vape.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cannabinoides/administración & dosificación , Condicionamiento Operante/efectos de los fármacos , Ciclohexanoles/administración & dosificación , Sistemas Electrónicos de Liberación de Nicotina , Indazoles/administración & dosificación , Valina/análogos & derivados , Vapeo , Administración por Inhalación , Aerosoles , Animales , Cannabinoides/síntesis química , Ciclohexanoles/síntesis química , Femenino , Indazoles/síntesis química , Inyecciones Intraperitoneales , Masculino , Ratones Endogámicos C57BL , Valina/administración & dosificación , Valina/síntesis química
17.
Drug Alcohol Depend ; 204: 107504, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31476643

RESUMEN

BACKGROUND: Use of electronic cigarettes (e-cigarettes) has increased exponentially since their appearance on the U.S. market around 2007. To provide preclinical models of vaping that incorporate olfactory cues and chemosensory effects (including flavors) that play a role in human vaping behavior, the feasibility of using a modified e-cigarette device for delivery of aerosolized nicotine was examined in a nicotine discrimination procedure in mice. METHODS: Adult female and male C57BL/6 mice were trained to discriminate 0.75 mg/kg subcutaneous (s.c.) nicotine from saline. After determination of a s.c. nicotine dose-effect curve, aerosolized freebase nicotine and nicotine-containing tobacco products (i.e., non-flavored and Arctic Blast e-liquids) were evaluated. RESULTS: Nicotine (s.c.) dose-dependently substituted in mice of both sexes, although females showed less sensitivity and greater variability. By contrast, aerosolized nicotine, regardless of formulation, produced concentration-dependent increases up to maximum of 46-62% nicotine-associated responding. Brain nicotine concentrations for each sex were similar for s.c. 0.75 mg/kg nicotine and 30 mg/ml freebase nicotine. CONCLUSIONS: Mice of both sexes readily acquired s.c. nicotine discrimination, but females showed less sensitivity. Further, all three formulations of aerosolized nicotine produced increases in nicotine-like responding in mice of each sex. However, the maximum magnitude of these increases did not engender a similar degree of substitution as s.c. 0.75 mg/kg nicotine, despite similar brain concentrations of nicotine at 30 mg/ml aerosolized nicotine. Additional research is needed for determination of the reason(s); however, results here demonstrate initial feasibility for examination of the discriminative stimulus effects of vaped drugs such as nicotine.


Asunto(s)
Administración por Inhalación , Discriminación en Psicología/efectos de los fármacos , Inyecciones Subcutáneas , Nicotina/administración & dosificación , Animales , Encéfalo/metabolismo , Sistemas Electrónicos de Liberación de Nicotina , Femenino , Aromatizantes/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Factores Sexuales , Nicotiana/química , Vapeo/psicología
18.
Forensic Toxicol ; 37(1): 17-26, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30705707

RESUMEN

PURPOSE: The use of novel synthetic cannabinoids as intoxicants continues in spite of associated health risks. These compounds are typically smoked or vaporized, but many synthetic cannabinoids contain thermally labile chemical moieties. This study investigated the thermal stability six carboxamide-type synthetic cannabinoids (CUMYL-PICA, 5F-CUMYL-PICA, AMB-FUBINACA, MDMB-FUBINACA, NNEI, and MN-18) in order to characterise potential user exposure to thermolysis products. METHODS: Compounds were heated sequentially to 200, 400, 600 and 800 °C using a thermolysis probe, and the resultant thermolysis products were analysed via GC-MS. A secondary analysis quantified thermolytically generated cyanide via LC-MS/MS. RESULTS: All six synthetic cannabinoids underwent thermal degradation when heated above 400 °C, and released a variety of potentially toxic products, including toluene, naphthalene, and 1-naphthalamine. Compound-specific degradants were tentatively identified together with a general degradative pathway for carboxamide-type synthetic cannabinoids, which proceeds via indole- or indazole-amide formation and subsequent dehydration to an indole- or indazole-carbonitrile. This degradative pathway culminated in the thermolytic liberation of cyanide, in amounts up to 27 µg per mg of starting material. CONCLUSIONS: People who smoke carboxamide-type synthetic cannabinoids are likely to be exposed to range of potentially toxic thermal degradants, including cyanide. These degradants could have significant health impacts in human users.

19.
J Pharmacol Exp Ther ; 325(2): 567-76, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18256173

RESUMEN

The cannabinoid and serotonin systems modulate feeding behavior in humans and laboratory animals. The present study assessed whether a cannabinoid (CB)(1) receptor antagonist and a serotonin (5-HT)(2C) receptor agonist alone and in combination attenuate motivation for the liquid nutritional drink Ensure as measured by a progressive ratio (PR) schedule of reinforcement in male C57BL/6 mice. Pretreatment (15 min i.p.) with either the CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR141716) (SR; Rimonabant or Acomplia) or the 5-HT(2C) receptor agonist m-chlorophenylpiperazine (mCPP) dose-dependently decreased the maximum ratio completed under the PR schedule (break point) in mice. ED(25) values for SR and mCPP to decrease break point were determined, and the relative potency of each drug alone was quantified. Fixed dose-ratio pairs of SR/mCPP based on their relative potency were then administered. Dose-addition analysis comparing the experimentally determined potency for SR/mCPP combinations with their predicted additive potency revealed that SR/mCPP combinations in 1:1 and 2:1 ratios based on relative potency produced significant synergistic attenuation of break point for Ensure. The ED(25) values for decreasing break point were consistently lower than ED(25) values for decreasing response rate, and synergistic effects of SR/mCPP combinations on break point were seen independent of synergistic effects on response rate. These results indicate that cannabinoid CB(1) and serotonin 5-HT(2C) receptors are involved in motivated feeding behavior in mice and that these compounds can synergistically modulate motivation for palatable food with the synergy dependent upon the ratio of SR/mCPP in the combination.


Asunto(s)
Conducta Alimentaria/efectos de los fármacos , Piperazinas/farmacología , Piperidinas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Agonistas del Receptor de Serotonina 5-HT2 , Agonistas de Receptores de Serotonina/farmacología , Animales , Sinergismo Farmacológico , Masculino , Ratones , Receptor Cannabinoide CB1/fisiología , Receptor de Serotonina 5-HT2C/fisiología , Rimonabant
20.
Neuropharmacology ; 137: 133-140, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29758385

RESUMEN

Edible cannabis-infused products are an increasingly popular method of using cannabis in the United States. Yet, preclinical research to determine mechanisms underlying abuse of Δ9-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, has focused primarily on the effects of parenteral administration. The purpose of this study was to examine the rewarding and aversive effects of oral THC in a novel rodent voluntary ingestion model. Adult male and female Sprague Dawley rats were given access to sucrose-sweetened solutions during daily sessions. A range of THC concentrations, each paired with a unique flavor previously tested alone, was introduced into these solutions for four-session exposure periods and drinking volumes were measured. Injected (i.p.) THC doses were also paired with unique flavors to compare the effects of route of THC administration on drinking. Introduction of THC into sucrose solutions dose-dependently decreased drinking upon initial exposure, though drinking generally increased in subsequent sessions. By contrast, i.p. THC produced sustained dose-dependent decreases in drinking in rats of both sexes. Subsequent exposure to paired flavors in the absence of THC resulted in further decreases in drinking, suggesting route-specific aversion. Additional testing using saccharin-sweetened solutions in a two-bottle choice paradigm was also conducted, with THC producing sustained dose-dependent decreases in drinking after initial exposure in rats of both sexes. Though self-administration of ingested THC was not demonstrated, evidence of route-specific THC aversion was observed, which suggests that certain routes and/or rates of THC administration may mitigate some of its aversive effects.


Asunto(s)
Dronabinol/administración & dosificación , Dronabinol/efectos adversos , Psicotrópicos/administración & dosificación , Psicotrópicos/efectos adversos , Refuerzo en Psicología , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Conducta Alimentaria , Femenino , Masculino , Distribución Aleatoria , Ratas Sprague-Dawley , Autoadministración , Volición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA