Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Small ; 19(42): e2303368, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37328446

RESUMEN

Unpredictable and extreme weather conditions, along with increasing electromagnetic pollution, have resulted in a significant threat to human health and productivity, causing irreversible damage to society's well-being and economy. However, existing personal temperature management and electromagnetic protection materials lack adaptability to dynamic environmental changes. To address this, a unique asymmetric bilayer leather/a-MWCNTs/CA fabric is developed by vacuum-infiltrating interconnected a-MWCNTs networks into natural leather's microfiber backbone and spraying porous acetic acid (CA) on the reverse side. Such fabric achieves simultaneous passive radiation cooling, heating, and anti-electromagnetic interference functions without external energy input. The fabric's cooling layer has high solar reflectance (92.0%) and high infrared emissivity (90.2%), providing an average subambient radiation cooling effect of 10 °C, while the heating layer has high solar absorption (98.0%), enabling excellent passive radiative heating and effective compensation for warming via Joule heating. Additionally, the fabric's 3D conductive a-MWCNTs network provides electromagnetic interference shielding effectiveness of 35.0 dB mainly through electromagnetic wave absorption. This multimode electromagnetic shielding fabric can switch between cooling and heating modes to adapt to dynamic cooling and heating scenarios, providing a new avenue for sustainable temperature management and electromagnetic protection applications.

2.
Angew Chem Int Ed Engl ; 58(49): 17834-17842, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31549478

RESUMEN

Metal halide perovskites have emerged as a new generation of X-ray detector materials. However, large-sized MAPbI3 single crystals (SCs) still exhibit lower performance than MAPbBr3 SCs in X-ray detection. DFT (density functional theory) simulations suggest the problem could be overcome by alloying large-sized cations at the A site. The alloyed process could notably decrease the electron-phonon coupling strength and increase the material defect formation energy. Accordingly, centimeter-sized alloyed DMAMAPbI3 (DMA=dimethylammonium) and GAMAPbI3 (GA=guanidinium) SCs are obtained. Electrical characterizations confirm the GAMAPbI3 SCs display improved charge collection efficiency. It also exhibits a remarkable reduction of dark current, an important figure of merit for X-ray detectors. With a judiciously designed device architecture, the overall detector performance confirms GAMAPbI3 SCs as one of the most sensitive perovskite X-ray detectors to date.

3.
Inorg Chem ; 57(22): 14280-14289, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30394080

RESUMEN

During the formation of magnesium-organic frameworks, the coordination sphere of magnesium tends to be partially occupied by O-containing solvent molecules such as amides, which will dramatically decrease the symmetry of Mg-organic frameworks and thus lead to low stability. It is noted that up to now, most reported Mg-metal-organic frameworks (MOFs) (>80%) crystallize in the space groups whose symmetry is lower than that of a tetragonal system. In this work, we demonstrate that acetate (Ac) may act as modulator to eliminate the influence of amide solvent and improve the symmetry of Mg-organic frameworks. Two novel Mg-MOFs, namely, {[(CH3)NH3]4[Mg3(BTB)8/3(Ac)2(H2O)]} n (SNNU-35, H3BTB = 4',4'',4'''-benzene-1,3,5-tribenzoic acid) and {[(CH3)2NH2][Mg2(FDA)2(Ac)]} n (SNNU-36, H2FDA = 2,5-furandicarboxylic acid) were successfully designed, which crystallize in rhombohedral R-3 and tetragonal I4 /mmm space groups, respectively. Four independent BTB ligands link three unique Mg cations and generate superlarge [Mg21BTB17] nanocages, which interlock each other by strong π···π stacking to give a two-fold interpenetrating architecture of SNNU-35. On the other hand, carboxylate and acetate groups chelate Mg atoms to form one-dimensional chains, which are extended by FDA to produce the rod-packing framework of SNNU-36. Two microporous Mg-MOFs both exhibit notable CO2 and H2 uptakes. H3BTB and H2FDA ligands both have emission features, and Mg ions usually can enhance the fluorescent intensity, which lead to a strong solid-state luminescence emission property of SNNU-35 and -36. Importantly, two Mg-MOFs both show fast and quantative sensing performance for nitrocompounds. Among three selected models of substrate, SNNU-35 and -36 can eliminate the interference of nitromethane (NM) and exhibit high sensitivity to nitrobenzene (NB) and o-nitrotoluene (2-NT) with large k sv values (>105 M-1). Especially, the fluorescence quenching efficiency of NB (5000 ppm) and 2-NT (8000 ppm) can reach 96.3% and 89.5% and 85.0% and 83.7% for SNNU-35 and -36, respectively. This work offers not only an effective route to improve the symmetry of magnesium-organic frameworks but also two potential fluorescence sensors for nitroaromatic compounds.

4.
Int J Biol Macromol ; 259(Pt 1): 129257, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191111

RESUMEN

This study evaluated the influence of chestnut powder, produced using ball mill superfine grinding (BMSG), jet superfine grinding (JSG), and ordinary grinding (OG), on wheat flour properties. Blending wheat flour with chestnut powder resulted in a darker flour blend (3 % decline of L*), with decreased the tap density and increased water holding capacity. Adding appropriate proportion of superfine chestnut powder can bolster the mixed flour's thermal stability (15 % BMSG/JSG) and freeze-thaw stability (10 % BMSG/JSG), while significantly enhancing the anti-aging properties of flour products. The proposition of 5 % superfine BMSG/JSG did not significantly affect the tensile resistance of the dough, and even improve the dough's tensile strength. In addition, the hardness, adhesiveness, springiness and pH of fermentation increased due to the addition of chestnut powder, as supported by the dough texture analyses and fermentation characteristics findings. However, the excessive addition of chestnut powder affected the dough network's structural integrity to some extent. Further study can focus on the influencing mechanism of chestnut powder on gluten formation and related nutritional properties. Overall, this research underscores the potential of utilizing chestnut powder to enhance the nutritional and functional qualities of wheat-based products.


Asunto(s)
Harina , Triticum , Triticum/química , Polvos/química , Harina/análisis , Glútenes/química , Dureza
5.
Int J Biol Macromol ; 256(Pt 1): 128307, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992941

RESUMEN

Films with simultaneously excellent mechanical and anti-fog properties are of great importance for food packaging. A novel strategy is described here to prepare long-lasting anti-fog film with antibacterial and antioxidant capabilities via a simple, green approach. The CMC (carboxymethyl chitosan) gel was integrated with CNF/TA (cellulose nanofibers/tannic acid) composite solution based on layer-by-layer assembly to form a membrane with a bilayer structure. The anti-fog performance of the bilayer film could be adjusted by regulating the CNF/TA layer thickness. On the whole, the developed anti-fog film had high mechanical strength and excellent UV shielding properties, as well as good antibacterial and antioxidant properties, and could be non-fogging for a long time under water vapor (40 °C). The effect of double layer anti-fog film (3%CmFT-3) on the fresh-keeping effect of white Hypsizygus marmoreus was compared at room temperature (28 °C) with commercially available anti-fog PVC film. The results showed that the bilayer anti-fog film could effectively prevent the generation of fog, delay the Browning, inhibit mildew, improve the overall acceptability, and effectively extend the shelf life of white Hypsizygus marmoreus. This biomass-based anti-fog film offers great potential for the development of multifunctional green food packaging.


Asunto(s)
Agaricales , Quitosano , Nanofibras , Polifenoles , Quitosano/farmacología , Quitosano/química , Celulosa/farmacología , Celulosa/química , Nanofibras/química , Antioxidantes/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Embalaje de Alimentos
6.
Sci Rep ; 14(1): 14848, 2024 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937539

RESUMEN

This study aimed to assess the safety and efficacy of interventional embolization in cirrhotic patients with refractory hepatic encephalopathy (HE) associated with large spontaneous portosystemic shunts (SPSS). Inverse probability of treatment weighting (IPTW) was employed to minimize potential bias. A total of 123 patients were included in this study (34 in the embolization group and 89 in the control group). In the unadjusted cohort, the embolization group demonstrated significantly better liver function, a larger total area of SPSS, and a higher percentage of patients with serum ammonia levels > 60 µmol/L and the presence of hepatocellular carcinoma (HCC) (all P < 0.05). In the IPTW cohort, baseline characteristics were comparable between the two groups (all P > 0.05). Patients in the embolization group exhibited significantly longer HE-free survival compared to the control group in both the unadjusted and IPTW cohorts (both P < 0.05). Subsequent subgroup analyses indicated that patients with serum ammonia level > 60 µmol/L, hepatopetal flow within the portal trunk, the presence of solitary SPSS, a baseline HE grade of II, and the absence of HCC at baseline showed statistically significant benefit from embolization treatment (all P < 0.05). No early procedural complications were observed in the embolization group. The incidence of long-term postoperative complications was comparable to that in the control group (all P > 0.05). Hence, interventional embolization appears to be a safe and effective treatment modality for cirrhotic patients with refractory HE associated with large SPSS. However, the benefits of embolization were discernible only in a specific subset of patients.


Asunto(s)
Embolización Terapéutica , Encefalopatía Hepática , Cirrosis Hepática , Humanos , Encefalopatía Hepática/terapia , Encefalopatía Hepática/etiología , Masculino , Femenino , Embolización Terapéutica/métodos , Persona de Mediana Edad , Cirrosis Hepática/complicaciones , Cirrosis Hepática/terapia , Anciano , Resultado del Tratamiento , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/complicaciones , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/complicaciones , Estudios Retrospectivos , Amoníaco/sangre
7.
BMJ Open ; 14(2): e081194, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346880

RESUMEN

INTRODUCTION: The presence of spontaneous portosystemic shunts (SPSS) has been identified to be associated with hepatic encephalopathy (HE) in patients with cirrhosis. Nevertheless, the role of interventional embolisation in managing such patients remains poorly defined. Consequently, this prospective controlled study aims to assess the efficacy and safety of interventional embolisation as a therapeutic approach for patients with cirrhosis and recurrent or persistent HE related to SPSS. METHODS AND ANALYSIS: Cirrhotic patients diagnosed with recurrent or persistent HE associated with SPSS will be recruited for this study, and assigned to either the interventional embolisation group or the standard medical treatment group. The efficacy endpoints encompass the evaluation of postoperative alleviation of HE symptoms and the incidence of overt HE recurrence during the follow-up period, as well as the duration and frequency of hospitalisations for HE, alterations in liver function and volume, and overall survival. The safety endpoints encompass both immediate and long-term postoperative complications. ETHICS AND DISSEMINATION: This study will be conducted in strict adherence to the principles of good clinical practice and the guidelines outlined in the Declaration of Helsinki. Ethical approval for the trial has been obtained from the Ethics Committee of Mengchao Hepatobiliary Hospital of Fujian Medical University (2023_013_02). Written informed consent will be obtained from all the participants by the treating physician for each patient prior to their enrolment. The documented informed consent forms will be retained as part of the clinical trial records for future reference. The study findings will be disseminated through publication in peer-reviewed journals and will be presented at international conferences. TRIAL REGISTRATION NUMBER: ChiCTR2300072189.


Asunto(s)
Encefalopatía Hepática , Derivación Portosistémica Intrahepática Transyugular , Humanos , Encefalopatía Hepática/terapia , Encefalopatía Hepática/complicaciones , Cirrosis Hepática/complicaciones , Cirrosis Hepática/terapia , Derivación Portosistémica Intrahepática Transyugular/efectos adversos , Estudios Prospectivos , Proyectos de Investigación , Resultado del Tratamiento , Ensayos Clínicos Controlados no Aleatorios como Asunto
8.
Food Chem ; 463(Pt 4): 140976, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39362089

RESUMEN

Oleogels have attracted considerable attention due to their excellent viscoelasticity and high content of polyunsaturated fatty acid. This study explored the potential of Zein/(-)-epigallocatechin-3-gallate/Ca2+ complexes oleogels loaded with lycopene as potential substitute for solid fats in biscuit formulations. Utilizing an emulsion-templated method, oleogels were prepared and characterized for visual appearance, droplet size, microstructure, and rheological properties. The incorporation of lycopene indicated a dose-dependent effect on these characteristics, achieving optimal properties at a concentration of 0.3 mg/mL. At this concentration, oleogels exhibited higher encapsulation efficiency (> 90 %), lower oil loss (< 2 %), and denser network structures. Rheological analysis highlighted the shear-thinning behavior, gel-like structure, and thixotropic recovery of oleogels. Substituting of margarine with lycopene-loaded oleogels in biscuits yielded products with regular appearance, uniform color, and potential health benefits, demonstrating the viability of these oleogels as a healthier alternative to traditional solid fats in baking.

9.
Food Chem ; 452: 139564, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718455

RESUMEN

High internal phase Pickering emulsions (HIPPEs) prepared from natural polymers have attracted much attention in the food manufactures. However, single zein-stabilized HIPPEs are poorly stable and prone to flocculation near the isoelectric point. To address this issue, in this study, zein and whey protein nanofibrils (WPN) complex nanoparticles (ZWNPs) were successfully prepared using a pH-driven method, and ZWNPs were further used as HIPPEs stabilizers. The results showed that zein and WPN were combined together through hydrogen bonding and hydrophobic interaction to form ZWNPs, and the HIPPEs stabilized by ZWNPs had excellent stability, which could effectively protect the internally encapsulated lycopene and improve the bioaccessibility of lycopene. In conclusion, this study provides a new strategy for the preparation of stable hydrophobic protein-based HIPPEs, represented by zein.


Asunto(s)
Emulsiones , Interacciones Hidrofóbicas e Hidrofílicas , Licopeno , Proteína de Suero de Leche , Zeína , Zeína/química , Emulsiones/química , Licopeno/química , Proteína de Suero de Leche/química , Nanofibras/química , Nanopartículas/química
10.
Food Chem ; 463(Pt 1): 141051, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39241419

RESUMEN

In this study, the self-assembly mechanism of Zein/(-)-epigallocatechin-3-gallate/polyethylene glycol (Zein/EGCG/PEG) composite nanoparticles and their interface adsorption behavior at the oil-water interface were investigated by coarse-grained molecular dynamics simulation. Fourier transform infrared spectroscopy and conformation analysis demonstrated that there were electrostatic and hydrogen bond interactions between Zein and EGCG, physical entanglement between PEG and Zein, and hydrogen bond interaction between EGCG and PEG. The nanoparticles accumulated at the oil-water interface, and there was an obvious interface layer between oil phase and water phase, as indicated by confocal laser scanning microscope and scanning electron microscope. The adsorbing of Zein/EGCG/PEG nanoparticles at the oil-water interface was confirmed by coarse-grained molecular dynamics simulation. Further findings confirmed that Zein/EGCG/PEG nanoparticles could serve as stabilizers for oleogels with self-supporting structure, viscoelastic solid behavior and temperature response characteristics. The current research offered a novel approach to enhance protein interface characteristics and create food-grade emulsifiers and oleogelators.

11.
Food Chem ; 463(Pt 4): 141476, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39383795

RESUMEN

Citrus fruits are highly susceptible to pathogenic fungal infections after harvesting, which causes serious economic losses. Therefore, it's necessary to develop new antifungal packaging. In this study, gamma-Decanolactone (DL) was successfully encapsulated in a polycaprolactone (PCL)/ß-cyclodextrin (ß-CD) composite system using electrostatic spinning technology. PCL/ß-CD was compounded in different ratios, the ratio was screened through other indicators such as fiber morphologies and mechanical properties. Then, antifungal mats were prepared by adding different concentrations of DL to the PCL/ß-CD solution. The results showed that when the mixture ratio of PCL/ß-CD was 6:1 and loaded with 6 % DL, the antifungal felt had strong mechanical, significantly inhibiting the growth of three citrus pathogens (P. digitatum, P. italicum and G. candidum), released DL for up to 204 h and effectively reduced the morbidity rate of citrus fruits. Therefore, the antifungal pad prepared in this study has great potential in the field of citrus disease control.

12.
Int J Biol Macromol ; 231: 123362, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36690235

RESUMEN

The utilization of microcarriers is an effective technique to protect and slow down the release of active ingredients, while the combination of microcarriers and film materials is an important way to expand the application scenario of active ingredients. The aim of this study was to develop a simple and facile strategy for designing a multifunctional bilayer bioactive film that combines stable mechanical properties, sustained-release characteristics for active ingredients with good antioxidant and antibacterial properties. The EGCG-loaded chitosan active microspheres were prepared by sol-gel method, and then the carboxymethyl cellulose solution containing the active microspheres was assembled onto the carboxymethyl chitosan gel substrate based on intermolecular hydrogen bonding to construct a film with a stable bilayer structure. The results indicated that the bilayer film had dense microstructure and excellent mechanical strength (37.05 MPa), and exhibited UV-blocking properties and excellent gas barrier performance. Meanwhile, the loading of active ingredients (EGCG) in the microspheres enabled the bilayer film to exhibit excellent antioxidant and antibacterial properties, and the controlled release of EGCG by the film was sustainable and showed pH responsiveness. The results of this work provide a new perspective for the design and development of bio-based active packaging film with tunable functional characteristics.


Asunto(s)
Quitosano , Quitosano/química , Antioxidantes/química , Microesferas , Antibacterianos/química , Embalaje de Alimentos
13.
Adv Sci (Weinh) ; 10(11): e2206925, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36793107

RESUMEN

High indoor humidity/temperature pose serious public health threat and hinder industrial productivity, thus adversely impairing the wellness and economy of the entire society. Traditional air conditioning systems for dehumidification and cooling involve significant energy consumption and have accelerated the greenhouse effect. Here, this work demonstrates an asymmetric bilayer cellulose-based fabric that enables solar-driven continuous indoor dehumidification, transpiration-driven power generation, and passive radiative cooling using the same textile without any energy input. The multimode fabric (ABMTF) consists of a cellulose moisture absorption-evaporation layer (ADF) and a cellulose acetate (CA) radiation layer. The ABMTF exhibits a high moisture absorption capacity and water evaporation rate, which quickly reduces the indoor relative humidity (RH) to a comfortable level (40-60% RH) under 1 sun illumination. The evaporation-driven continuous capillary flow generates a maximum open-circuit voltage (Voc ) of 0.82 V, and a power density (P) up to 1.13 µW cm-3 . When a CA layer with high solar reflection and mid-infrared (mid-IR) emissivity faces outward, it realizes subambient cooling of ≈12 °C with average cooling power of ≈106 W m-2 at midday under radiation of 900 W m-2 . This work brings a new perspective to develop the next-generation, high performance environmentally friendly materials for sustainable moisture/thermal management and self-powered applications.

14.
J Food Sci ; 87(8): 3459-3471, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35838074

RESUMEN

The Maillard reaction (MR) has been known to modify proteins and optimize their physicochemical properties by conjugating with reducing sugars. The structure and physicochemical properties of wheat gliadin and maize amylopectin conjugates induced by MR were investigated under different gliadin-amylopectin ratios (2:1, 1:1, 1:2, 1:4, and 1:8). The formation of conjugates was indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, degree of conjugation, and browning development analyses. The Fourier transform infrared and fluorescence spectroscopy analyses suggested changes in the structures of conjugates and the microenvironment of amino acids. A remarkable decrease in the ß-turn structure content and an increase in the free sulfhydryl group content were observed at a ratio of 1:8, leading to decreased allergenicity. The reaction process was commendably controlled at a ratio of 1:1 with a 59.7% degree of conjugation in this group, contributing to the amelioration of solubility and foaming properties. Meanwhile, improvements in the oil holding capacity, surface hydrophobicity, and emulsifying properties were observed at a ratio of 1:4. PRACTICAL APPLICATION: The study revealed that the conjugates produced by MR might have various degrees of improved functional properties and reduced allergenicity at different ratios of substrates. Our study might be helpful for conjugates to assist in improving the texture of products and its potential in expanding the industrial application of products with gliadin.


Asunto(s)
Amilopectina , Zea mays , Emulsiones/química , Gliadina , Calefacción , Triticum
15.
Int J Biol Macromol ; 215: 12-22, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35718142

RESUMEN

Excessive exposure to ultraviolet B (UVB) irradiation is one of the major risk factors for skin photoaging. The aim of this study was to investigate the protective effect of Premna microphylla Turcz pectin (PMTP) against UVB-induced skin aging in BALB/c-nu mice. PMTP was characteristic of a low methoxyl RG-I pectin with Mw was 26.60 kDa, mainly composed of galacturonic acid. PMTP-containing cream efficiently inhibited the water loss, epidermal hyperplasia, matrix metalloproteinases-1 (MMP-1), and collagen destruction in UVB-induced skin injury mice. Additionally, topical administration of PMTP-containing cream significantly increased protein levels of the nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), macrophage-activating factor (Maf), and heme oxygenase 1 (HO-1), and the expression of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). In contrast, application of PMTP-containing cream on mice skin decreased the protein levels of nuclear factor-kappa B (NF-κB), inhibitor kappa B kinase ß (IKKß), and cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines. Taken togethmier, these findings suggest that PMTP might protect UVB-induced skin aging via activating Nrf2 pathway and suppressing NF-κB pathway.


Asunto(s)
Lamiaceae , Factor 2 Relacionado con NF-E2 , Pectinas , Envejecimiento de la Piel , Animales , Ratones , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Lamiaceae/química , Ratones Endogámicos BALB C , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Pectinas/farmacología , Piel , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/genética , Envejecimiento de la Piel/fisiología , Rayos Ultravioleta/efectos adversos , Preparaciones de Plantas/farmacología
16.
Food Chem ; 378: 132091, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35032808

RESUMEN

The biological activity and absorption of curcumin (Cur) is limited in application due to its low water solubility, poorstabilityand rapid metabolism. In this work, Cur loaded (-)-epigallocatechin-3-gallate (EGCG)/poly(N-vinylpyrrolidone) (PVP) nanoparticles (CEP-NPs) was successfully fabricated via self-assembly driven by hydrogen bonding, providing with desirable Cur-loading efficiency, high stability, strong antioxidant capacity, and pH-triggered intestinal targeted release properties. Molecular dynamics simulations further indicated the Cur was coated with EGCG and PVP in CEP-NPs and high acid prolonged release property was attribute to low ionization degree of EGCG. Besides, the enhanced intestinal absorption of Cur was related to inhibition of Cur metabolism by EGCG, enhancement of cellular uptake and higher Caco-2 monolayer permeation. Pharmacokinetic study showed that the oral bioavailability presented nearly 12-fold increment. Therefore, this study provides a new horizon for improving the Cur utilization in food and pharmaceutical fields.


Asunto(s)
Curcumina , Nanopartículas , Disponibilidad Biológica , Células CACO-2 , Catequina/análogos & derivados , Portadores de Fármacos , Humanos , Enlace de Hidrógeno , Tamaño de la Partícula , Pirrolidinonas
17.
Food Chem ; 373(Pt B): 131489, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34749091

RESUMEN

Zein is potential in encapsulating and delivering polyphenols in food industry. Our study investigated the interaction mechanisms and structural changes of the interaction between ferulic acid (FA) and zein under different CaCl2 concentrations. Addition of CaCl2 resulted in amino acids micro-environment and structural changes of zein and zein/FA complex, which was dependent on different CaCl2 concentrations. At 0.5 mol/L CaCl2 concentration, zein/FA exhibited spherical particles with rough surfaces. Fourier transform infrared analysis showed the decrease of α-helix and ß-sheets contents accompanied by the increase of ß-turns and unordered coil contents. Molecular dynamics simulation demonstrated FA interacted with zein mainly through hydrogen bonds and hydrophobic force. These observations might contribute to the decreased surface hydrophobicity and digestibility of zein. Results provided a better understanding of the interaction between zein and other molecules, which might be helpful for the development of zein particles as functional materials to encapsulate and deliver bioactive compounds.


Asunto(s)
Zeína , Cloruro de Calcio , Ácidos Cumáricos , Interacciones Hidrofóbicas e Hidrofílicas
18.
J Food Sci ; 87(1): 80-93, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34935129

RESUMEN

Proteins, one of the vital nutritional compounds sensitive to the environment, can be modified by interaction with polyphenols. Ultrasonication has been applied for enhancing the functional properties of proteins. In this study, the interactions of gliadin (G) and rutin (R) in the absence and presence of ultrasonication (0, 150, 300, 450, and 600 W) for 20 min were investigated, with a focus on the properties of emulsions prepared by G-R complexes. Ultrasonication improved the interaction, which increased the content of ß-type secondary structure. Ultrasonication at 450 W increased the particle size of the conjugates. For Pickering emulsions, treating the covering of R on G with ultrasonication improves the stability of the G-based emulsion significantly, owing to the strong films formed on the oil-water interfaces. The G-R complexes treated at 450 W ultrasonication formed emulsions that showed higher potential and storage modulus (G') and denser microstructures than those of the untreated emulsions. Nevertheless, ultrasound treatment at 600 W weakened the emulsion properties that were stabilized by the conjugates. Ultrasound combined R was shown to be a potential processing technology for changing the protein structure and producing stable emulsions. PRACTICAL APPLICATION: The interactions between proteins and polyphenols are able to preserve the stability of the functional compounds, allow targeted and controlled release, and improve the texture of these complexes employed in the food industry. Improvements in the functional characteristics of the protein-polyphenol complexes so that they possess high emulsifying stability during food processing is a crucial factor for employing them in the food industry. Therefore, the aim of this research is using a soluble complex of gliadin-rutin for the development of its functional characteristics.


Asunto(s)
Gliadina , Nanopartículas , Emulsiones , Tamaño de la Partícula , Rutina , Agua
19.
Food Funct ; 12(24): 12647-12658, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34821891

RESUMEN

Anthocyanins have anti-inflammatory, anticarcinogenic and antioxidant properties and anti-aging effects as well as potential application as pigments. The metabolism of anthocyanins in fermented food has attracted increasing attention. However, the effect of lactic acid bacteria (LAB) fermentation on its anti-aging activity remains mostly unknown. The current study aimed to investigate the compositions, antioxidant activities and anti-aging effect of fermented purple sweet potato anthocyanins (FSPA) on aging Caenorhabditis elegans compared to raw purple sweet potato anthocyanins (PSPA). Results showed that anthocyanins were degraded into more bioavailable phenolic acids by Weissella confusa fermentation. PSPA and FSPA can extend the lifespan of C. elegans by 26.7% and 37.5%, respectively, through improving the activity of antioxidant enzymes as well as decreasing MDA content, ROS levels and lipofuscin accumulation. Pretreatment of the worms with PSPA and FSPA induced their potential to resist to thermal tolerance and oxidative stress, and FSPA exerted a higher anti-stress effect than PSPA. Moreover, FSPA supplementation upregulated the mRNA expressions of genes daf-16, hsp-16.2, sir-2.1, skn-1 and sod-3 and downregulated the expression of daf-2 in the nematodes, whereas PSPA only induced the increase in the expressions of sir-2.1, skn-1 and sod-3. Overall, FSPA can improve stress resistance and extend the lifespan of C. elegans by both insulin/IGF-1 signaling pathway and dietary restriction pathway, providing a theoretical basis for the application of PSPA in fermented food as functional pigments.


Asunto(s)
Envejecimiento/efectos de los fármacos , Antocianinas/farmacología , Caenorhabditis elegans/efectos de los fármacos , Ipomoea batatas/metabolismo , Extractos Vegetales/farmacología , Animales , Fermentación
20.
Foods ; 11(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35010176

RESUMEN

Ulcerative colitis (UC) is a chronic and nonspecific inflammatory disease of the colon and rectum, and its etiology remains obscure. Cherry polyphenols showed potential health-promoting effects. However, both the protective effect and mechanism of cherry polyphenols on UC are still unclear. This study aimed to investigate the potential role of the free polyphenol extract of cherry in alleviating UC and its possible mechanism of action. Our study revealed that the free polyphenol extract of cherry management significantly alleviated UC symptoms, such as weight loss, colon shortening, the thickening of colonic mucous layer, etc. The free polyphenol extract of cherry treatment also introduced a significant reduction in levels of malondialdehyde (MDA), myeloperoxidase (MPO) and nitric oxide (NO), while causing a significant elevation in levels of catalase (CAT), glutathione (GSH-Px), superoxide dismutase (SOD), as well as the downregulation of pro-inflammatory cytokines. This indicated that such positive effects were performed through reducing oxidative damage or in a cytokine-specific manner. The immunofluorescence analysis of ZO-1 and occludin proteins declared that the free polyphenol extract of cherry had the potential to prompt intestinal barrier function. The reduced expression levels of ß-catenin, c-myc, cyclin D1 and GSK-3ß suggested that the cherry extract performed its positive effect on UC by suppressing the Wnt/ß-ctenin pathway. This finding may pave the way into further understanding the mechanism of cherry polyphenols ameliorating ulcerative colitis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA