Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Genes Dev ; 36(11-12): 684-698, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35738677

RESUMEN

The progeny of intestinal stem cells (ISCs) dedifferentiate in response to ISC attrition. The precise cell sources, transitional states, and chromatin remodeling behind this activity remain unclear. In the skin, stem cell recovery after injury preserves an epigenetic memory of the damage response; whether similar memories arise and persist in regenerated ISCs is not known. We addressed these questions by examining gene activity and open chromatin at the resolution of single Neurog3-labeled mouse intestinal crypt cells, hence deconstructing forward and reverse differentiation of the intestinal secretory (Sec) lineage. We show that goblet, Paneth, and enteroendocrine cells arise by multilineage priming in common precursors, followed by selective access at thousands of cell-restricted cis-elements. Selective ablation of the ISC compartment elicits speedy reversal of chromatin and transcriptional features in large fractions of precursor and mature crypt Sec cells without obligate cell cycle re-entry. ISC programs decay and reappear along a cellular continuum lacking discernible discrete interim states. In the absence of gross tissue damage, Sec cells simply reverse their forward trajectories, without invoking developmental or other extrinsic programs, and starting chromatin identities are effectively erased. These findings identify strikingly plastic molecular frameworks in assembly and regeneration of a self-renewing tissue.


Asunto(s)
Cromatina , Células Madre , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Cromatina/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Ratones , Proteínas del Tejido Nervioso/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(32): E7632-E7641, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30037999

RESUMEN

Enterochromaffin (EC) cells constitute the largest population of intestinal epithelial enteroendocrine (EE) cells. EC cells are proposed to be specialized mechanosensory cells that release serotonin in response to epithelial forces, and thereby regulate intestinal fluid secretion. However, it is unknown whether EE and EC cells are directly mechanosensitive, and if so, what the molecular mechanism of their mechanosensitivity is. Consequently, the role of EE and EC cells in gastrointestinal mechanobiology is unclear. Piezo2 mechanosensitive ion channels are important for some specialized epithelial mechanosensors, and they are expressed in mouse and human EC cells. Here, we use EC and EE cell lineage tracing in multiple mouse models to show that Piezo2 is expressed in a subset of murine EE and EC cells, and it is distributed near serotonin vesicles by superresolution microscopy. Mechanical stimulation of a subset of isolated EE cells leads to a rapid inward ionic current, which is diminished by Piezo2 knockdown and channel inhibitors. In these mechanosensitive EE cells force leads to Piezo2-dependent intracellular Ca2+ increase in isolated cells as well as in EE cells within intestinal organoids, and Piezo2-dependent mechanosensitive serotonin release in EC cells. Conditional knockout of intestinal epithelial Piezo2 results in a significant decrease in mechanically stimulated epithelial secretion. This study shows that a subset of primary EE and EC cells is mechanosensitive, uncovers Piezo2 as their primary mechanotransducer, defines the molecular mechanism of their mechanotransduction and mechanosensitive serotonin release, and establishes the role of epithelial Piezo2 mechanosensitive ion channels in regulation of intestinal physiology.


Asunto(s)
Células Enterocromafines/fisiología , Canales Iónicos/metabolismo , Yeyuno/fisiología , Mecanotransducción Celular/fisiología , Serotonina/metabolismo , Animales , Células Cultivadas , Canales Iónicos/genética , Yeyuno/citología , Ratones , Ratones Transgénicos , Organoides/fisiología , Cultivo Primario de Células , ARN Interferente Pequeño/metabolismo , Análisis de la Célula Individual
3.
J Physiol ; 595(1): 79-91, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27392819

RESUMEN

KEY POINTS: The gastrointestinal epithelial enterochromaffin (EC) cell synthesizes the vast majority of the body's serotonin. As a specialized mechanosensor, the EC cell releases this serotonin in response to mechanical forces. However, the molecular mechanism of EC cell mechanotransduction is unknown. In the present study, we show, for the first time, that the mechanosensitive ion channel Piezo2 is specifically expressed by the human and mouse EC cells. Activation of Piezo2 by mechanical forces results in a characteristic ionic current, the release of serotonin and stimulation of gastrointestinal secretion. Piezo2 inhibition by drugs or molecular knockdown decreases mechanosensitive currents, serotonin release and downstream physiological effects. The results of the present study suggest that the mechanosensitive ion channel Piezo2 is specifically expressed by the EC cells of the human and mouse small bowel and that it is important for EC cell mechanotransduction. ABSTRACT: The enterochromaffin (EC) cell in the gastrointestinal (GI) epithelium is the source of nearly all systemic serotonin (5-hydroxytryptamine; 5-HT), which is an important neurotransmitter and endocrine, autocrine and paracrine hormone. The EC cell is a specialized mechanosensor, and it is well known that it releases 5-HT in response to mechanical forces. However, the EC cell mechanotransduction mechanism is unknown. The present study aimed to determine whether Piezo2 is involved in EC cell mechanosensation. Piezo2 mRNA was expressed in human jejunum and mouse mucosa from all segments of the small bowel. Piezo2 immunoreactivity localized specifically within EC cells of human and mouse small bowel epithelium. The EC cell model released 5-HT in response to stretch, and had Piezo2 mRNA and protein, as well as a mechanically-sensitive inward non-selective cation current characteristic of Piezo2. Both inward currents and 5-HT release were inhibited by Piezo2 small interfering RNA and antagonists (Gd3+ and D-GsMTx4). Jejunum mucosal pressure increased 5-HT release and short-circuit current via submucosal 5-HT3 and 5-HT4 receptors. Pressure-induced secretion was inhibited by the mechanosensitive ion channel antagonists gadolinium, ruthenium red and D-GsMTx4. We conclude that the EC cells in the human and mouse small bowel GI epithelium selectively express the mechanosensitive ion channel Piezo2, and also that activation of Piezo2 by force leads to inward currents, 5-HT release and an increase in mucosal secretion. Therefore, Piezo2 is critical to EC cell mechanosensitivity and downstream physiological effects.


Asunto(s)
Células Enterocromafines/fisiología , Canales Iónicos/fisiología , Mecanotransducción Celular/fisiología , Animales , Línea Celular , Humanos , Mucosa Intestinal/fisiología , Intestino Delgado/fisiología , Canales Iónicos/genética , Ratones , Estimulación Física , Presión , ARN Mensajero/metabolismo , Serotonina/metabolismo
4.
Gastroenterology ; 146(3): 754-764.e3, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24316261

RESUMEN

BACKGROUND & AIMS: The alimentary tract contains a diffuse endocrine system comprising enteroendocrine cells that secrete peptides or biogenic amines to regulate digestion, insulin secretion, food intake, and energy homeostasis. Lineage analysis in the stomach revealed that a significant fraction of endocrine cells in the gastric corpus did not arise from Neurogenin3 (Neurog3)-expressing cells, unlike enteroendocrine cells elsewhere in the digestive tract. We aimed to isolate enriched serotonin-secreting and enterochromaffin-like (ECL) cells from the stomach and to clarify their cellular origin. METHODS: We used Neurogenic differentiation 1 (NeuroD1) and Neurog3 lineage analysis and examined the differentiation of serotonin-producing and ECL cells in stomach tissues of NeuroD1-cre;ROSA(tdTom), tryptophan hydroxylase 1 (Tph1)-cyan fluorescent protein (CFP), c-Kit(wsh/wsh), and Neurog3Cre;ROSA(tdTom) mice by immunohistochemistry. We used fluorescence-activated cell sorting to isolate each cell type for gene expression analysis. We also performed RNA sequencing analysis of ECL cells. RESULTS: Neither serotonin-secreting nor ECL cells of the corpus arose from cells expressing NeuroD1. Serotonin-secreting cells expressed a number of mast cell genes but not genes associated with endocrine differentiation; they did not develop in c-Kit(wsh/wsh) mice and were labeled with transplanted bone marrow cells. RNA sequencing analysis of ECL cells revealed high expression levels of many genes common to endocrine cells, including transcription factors, hormones, ion channels, and solute transporters but not markers of bone marrow cells. CONCLUSIONS: Serotonin-expressing cells of the gastric corpus of mice appear to be bone marrow-derived mucosal mast cells. Gene expression analysis of ECL cells indicated that they are endocrine cells of epithelial origin that do not express the same transcription factors as their intestinal enteroendocrine cell counterparts.


Asunto(s)
Linaje de la Célula , Células Enterocromafines/patología , Células Enteroendocrinas/patología , Serotonina/metabolismo , Estómago/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Diferenciación Celular , Células Enterocromafines/metabolismo , Células Enteroendocrinas/metabolismo , Mucosa Gástrica/metabolismo , Mastocitos/metabolismo , Mastocitos/patología , Ratones , Ratones Transgénicos , Modelos Animales , Proteínas del Tejido Nervioso/metabolismo
5.
Dev Biol ; 371(2): 156-69, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22964416

RESUMEN

Notch signaling inhibits differentiation of endocrine cells in the pancreas and intestine. In a number of cases, the observed inhibition occurred with Notch activation in multipotential cells, prior to the initiation of endocrine differentiation. It has not been established how direct activation of Notch in endocrine precursor cells affects their subsequent cell fate. Using conditional activation of Notch in cells expressing Neurogenin3 or NeuroD1, we examined the effects of Notch in both organs, on cell fate of early endocrine precursors and maturing endocrine-restricted cells, respectively. Notch did not preclude the differentiation of a limited number of endocrine cells in either organ when activated in Ngn3(+) precursor cells. In addition, in the pancreas most Ngn3(+) cells adopted a duct but not acinar cell fate; whereas in intestinal Ngn3(+) cells, Notch favored enterocyte and goblet cell fates, while selecting against endocrine and Paneth cell differentiation. A small fraction of NeuroD1(+) cells in the pancreas retain plasticity to respond to Notch, giving rise to intraislet ductules as well as cells with no detectable pancreatic lineage markers that appear to have limited ultrastructural features of both endocrine and duct cells. These results suggest that Notch directly regulates cell fate decisions in multipotential early endocrine precursor cells. Some maturing endocrine-restricted NeuroD1(+) cells in the pancreas switch to the duct lineage in response to Notch, indicating previously unappreciated plasticity at such a late stage of endocrine differentiation.


Asunto(s)
Diferenciación Celular , Células Endocrinas/citología , Intestinos/citología , Páncreas/citología , Receptores Notch/metabolismo , Transducción de Señal , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula , Células Endocrinas/metabolismo , Mucosa Intestinal/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Páncreas/metabolismo
6.
Dev Biol ; 349(2): 406-16, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21074524

RESUMEN

The neuroendocrine hypothalamus regulates a spectrum of essential biological processes and underlies a range of diseases from growth failure to obesity. While the exploration of hypothalamic function has progressed well, knowledge of hypothalamic development is poor. In particular, very little is known about the processes underlying the genesis and specification of the neurons in the arcuate and ventromedial nuclei. Recent studies demonstrate that the proneural basic helix-loop-helix transcription factor Mash1 is required for neurogenesis and neuronal subtype specification in the ventral hypothalamus. We demonstrate here that Ngn3, another basic helix-loop-helix transcription factor, is expressed in mitotic progenitors in the arcuate and ventromedial hypothalamic regions of mouse embryos from embryonic days 9.5-17.5. Genetic fate mapping and loss of function studies in mice demonstrate that Ngn3+ progenitors contribute to subsets of POMC, NPY, TH and SF1 neurons and is required for the specification of these neuronal subtypes in the ventral hypothalamus. Interestingly, while Ngn3 promotes the development of arcuate POMC and ventromedial SF1 neurons, it inhibits the development of NPY and TH neurons in the arcuate nuclei. Given the opposing roles of POMC and NPY neurons in regulating food intake, these results indicate that Ngn3 plays a central role in the generation of neuronal populations controlling energy homeostasis in mice.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Metabolismo Energético/fisiología , Hipotálamo/embriología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Metabolismo Energético/genética , Inmunohistoquímica , Hibridación in Situ , Indoles , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neurogénesis/genética , Neuropéptido Y/metabolismo , Proopiomelanocortina/metabolismo
7.
Cell Mol Gastroenterol Hepatol ; 11(2): 433-448, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32822913

RESUMEN

BACKGROUND & AIMS: Transient expression of Neurog3 commits intestinal secretory progenitors to become enteroendocrine-biased progenitors and hence drive enteroendocrine differentiation. Loss of Neurog3 in mouse resulted in the depletion of intestinal enteroendocrine cells (EECs) and an increase in goblet cells. Earlier studies in developing mouse pancreas identified a role of Neurog3 gene dosage in endocrine and exocrine cell fate allocation. We aimed to determine whether Neurog3 gene dosage controls fate choice of enteroendocrine progenitors. METHODS: We acquired mutant Neurog3 reporter mice carrying 2, 1, or null Neurog3 alleles to study Neurog3 gene dosage effect by lineage tracing. Cell types arising from Neurog3+ progenitors were determined by immunohistochemistry using antibodies against intestinal lineage-specific markers. RNA sequencing of sorted Neurog3+/+, Neurog3+/-, or bulk intestinal cells were performed and differentially expressed genes were analyzed. RESULTS: We identified 2731 genes enriched in sorted Neurog3+/+-derived cells in the Neurog3+/+EYFP mouse intestine when compared with bulk duodenum epithelial cells. In the intestine of Neurog3+/-EGFP heterozygous mouse, we observed a 63% decrease in EEC numbers. Many Neurog3-derived cells stained for goblet marker Mucin 2. RNA sequencing of sorted Neurog3+/- cells uncovered enriched expression of genes characteristic for both goblet and enteroendocrine cells, indicating the mixed lineages arose from Neurog3+ progenitors. Consistent with this hypothesis, deletion of both Neurog3 alleles resulted in the total absence of EECs. All Neurog3+-derived cells stained for Mucin 2. CONCLUSIONS: We identified that the fate of Neurog3+ enteroendocrine progenitors is dependent on Neurog3 gene dosage. High Neurog3 gene dosage enforces the commitment of secretory progenitors to an EE lineage, while constraining their goblet cell lineage potential. Transcriptome profiling data was deposited to Gene Ontology omnibus, accession number: GSE149203.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Células Enteroendocrinas/fisiología , Células Caliciformes/fisiología , Proteínas del Tejido Nervioso/genética , Animales , Linaje de la Célula , Dosificación de Gen , Mucosa Intestinal/citología , Ratones , Ratones Transgénicos , RNA-Seq
8.
Cell Stem Cell ; 26(5): 675-692.e8, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32259481

RESUMEN

Intestinal homeostasis is tightly regulated by complex yet poorly understood signaling networks. Here, we demonstrate that Lats1/2, the core Hippo kinases, are essential to maintain Wnt pathway activity and intestinal stem cells. Lats1/2 deletion leads to loss of intestinal stem cells but drives Wnt-uncoupled crypt expansion. To explore the function of downstream transcriptional enhanced associate domain (TEAD) transcription factors, we identified a selective small-molecule reversible inhibitor of TEAD auto-palmitoylation that directly occupies its lipid-binding site and inhibits TEAD-mediated transcription in vivo. Combining this chemical tool with genetic and proteomics approaches, we show that intestinal Wnt inhibition by Lats deletion is Yes-associated protein (YAP)/transcriptional activator with PDZ-binding domain (TAZ) dependent but TEAD independent. Mechanistically, nuclear YAP/TAZ interact with Groucho/Transducin-Like Enhancer of Split (TLE) to block Wnt/T-cell factor (TCF)-mediated transcription, and dual inhibition of TEAD and Lats suppresses Wnt-uncoupled Myc upregulation and epithelial over-proliferation in Adenomatous polyposis coli (APC)-mutated intestine. Our studies highlight a pharmacological approach to inhibit TEAD palmitoylation and have important implications for targeting Wnt and Hippo signaling in human malignancies.


Asunto(s)
Neoplasias , Factores de Transcripción , Humanos , Intestinos , Fosfoproteínas/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Células Madre/metabolismo , Factores de Transcripción/metabolismo
9.
Sci Rep ; 9(1): 19489, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31862906

RESUMEN

Transcription factor Neurod1 is required for enteroendocrine progenitor differentiation and maturation. Several earlier studies indicated that ectopic expression of Neurod1 converted non- neuronal cells into neurons. However, the functional consequence of ectopic Neurod1 expression has not been examined in the GI tract, and it is not known whether Neurod1 can similarly switch cell fates in the intestine. We generated a mouse line that would enable us to conditionally express Neurod1 in intestinal epithelial cells at different stages of differentiation. Forced expression of Neurod1 throughout intestinal epithelium increased the number of EECs as well as the expression of EE specific transcription factors and hormones. Furthermore, we observed a substantial reduction of Paneth cell marker expression, although the expressions of enterocyte-, tuft- and goblet-cell specific markers are largely not affected. Our earlier study indicated that Neurog3+ progenitor cells give rise to not only EECs but also Goblet and Paneth cells. Here we show that the conditional expression of Neurod1 restricts Neurog3+ progenitors to adopt Paneth cell fate, and promotes more pronounced EE cell differentiation, while such effects are not seen in more differentiated Neurod1+ cells. Together, our data suggest that forced expression of Neurod1 programs intestinal epithelial cells more towards an EE cell fate at the expense of the Paneth cell lineage and the effect ceases as cells mature to EE cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Mucosa Intestinal/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Western Blotting , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Enterocitos/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Células Caliciformes/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Células de Paneth/metabolismo
10.
Nat Commun ; 10(1): 1029, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833673

RESUMEN

Enteroendocrine cells are specialised sensory cells located in the intestinal epithelium and generate signals in response to food ingestion. Whilst traditionally considered hormone-producing cells, there is evidence that they also initiate activity in the afferent vagus nerve and thereby signal directly to the brainstem. We investigate whether enteroendocrine L-cells, well known for their production of the incretin hormone glucagon-like peptide-1 (GLP-1), also release other neuro-transmitters/modulators. We demonstrate regulated ATP release by ATP measurements in cell supernatants and by using sniffer patches that generate electrical currents upon ATP exposure. Employing purinergic receptor antagonists, we demonstrate that evoked ATP release from L-cells triggers electrical responses in neighbouring enterocytes through P2Y2 and nodose ganglion neurones in co-cultures through P2X2/3-receptors. We conclude that L-cells co-secrete ATP together with GLP-1 and PYY, and that ATP acts as an additional signal triggering vagal activation and potentially synergising with the actions of locally elevated peptide hormone concentrations.


Asunto(s)
Adenosina Trifosfato/metabolismo , Enterocitos/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Intestinos , Neuronas Aferentes/metabolismo , Vías Aferentes , Animales , Línea Celular , Ingestión de Alimentos , Células Enteroendocrinas/metabolismo , Femenino , Ganglión/metabolismo , Ganglión/patología , Incretinas/metabolismo , Mucosa Intestinal/inervación , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Ganglio Nudoso/metabolismo , Ganglio Nudoso/patología , Péptido YY/metabolismo , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Nervio Vago/metabolismo
11.
Dev Biol ; 311(2): 478-86, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17936268

RESUMEN

Important functions of the RB family proteins include inhibition of cell cycle progression and regulation of terminal differentiation. We have examined the role of RB and the related protein, p107, in regulating cell cycle activity and differentiation of gastrointestinal endocrine cells, a relatively quiescent cell population, by conditionally disrupting the RB gene in neurogenin3 (Ngn3)-expressing cells in both p107(+/+) and p107(-/-) mice. Endocrine cells in the small intestine, colon, pancreas, and stomach were present in normal numbers in RB and RB-p107 mutants except for an increase in serotonin cells and decrease in ghrelin cells in the antral stomach. Deletion of RB resulted in a dramatic increase in proliferating serotonin cells in the antral stomach and intestine, whereas other enteroendocrine cell types exhibited much lower cell cycle activity or remained quiescent. The related p107 protein appears dispensable for enteroendocrine differentiation and does not functionally compensate for the loss of RB. Our results suggest that RB is required for enteroendocrine cells, particularly serotonin cells, to undergo cell cycle arrest as they terminally differentiate. RB has relatively subtle effects on enteroendocrine cell differentiation and is not required for the expression of the normal repertoire of hormones in the gastrointestinal tract.


Asunto(s)
Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Células Enteroendocrinas/metabolismo , Hormonas Gastrointestinales/metabolismo , Tracto Gastrointestinal/citología , Proteína de Retinoblastoma/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Células Enteroendocrinas/citología , Ghrelina/metabolismo , Humanos , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteína de Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Serotonina/metabolismo
12.
Cytometry A ; 73(2): 11-118, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18205194

RESUMEN

Animal models are increasingly being used for the assessment of fetal cell microchimerism in maternal tissue. We wished to determine the optimal transgenic mouse strain and analytic technique to facilitate the detection of rare transgenic microchimeric fetal cells amongst a large number of maternal wild-type cells. We evaluated two strains of mice transgenic for the enhanced green fluorescent protein (EGFP): a commercially available, commonly used strain (C57BL/6-Tg(ACTB-EGFP)10sb/J) (CAG) and a newly created strain (ROSA26-EGFP) using three different techniques: in vivo and ex vivo fluorescent imaging (for whole body and dissected organs, respectively), PCR amplification of gfp, and flow cytometry (FCM). By fluorescent imaging, organs from CAG mice were 10-fold brighter than organs from ROSA26-EGFP mice (P < 0.0001). By PCR, more transgene from CAG mice was detected compared to ROSA26-EGFP mice (P = 0.04). By FCM, ROSA26-EGFP cell fluorescence was more uniform than CAG cells. A greater proportion of cells from ROSA26-EGFP organs were positive for EGFP than cells from CAG organs, but CAG mice had a greater proportion of cells with the brightest fluorescent intensity. Each transgenic strain possesses characteristics that make it useful under specific experimental circumstances. The CAG mouse model is preferable when experiments require brighter cells, whereas ROSA26-EGFP is more appropriate when uniform or ubiquitous expression is more important than brightness. Investigators must carefully select the transgenic strain most suited to the experimental design to obtain the most consistent and reproducible data. In vivo imaging allows for phenotypic evaluation of whole animals and intact organs; however, we did not evaluate its utility for the detection of rare, fetal microchimeric cells in the maternal organs. Finally, while PCR amplification of a paternally inherited transgene does allow for the quantitative determination of rare microchimeric cells, FCM allows for both quantitative and qualitative evaluations of fetal cells at very high sensitivity in a plethora of maternal organs.


Asunto(s)
Quimerismo , Proteínas Fluorescentes Verdes/metabolismo , Animales , Linaje de la Célula/fisiología , Feto/citología , Feto/metabolismo , Citometría de Flujo/métodos , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Transgénicos/metabolismo , Microscopía Fluorescente/métodos , Especificidad de Órganos , Reacción en Cadena de la Polimerasa/métodos
13.
Mol Cell Biol ; 25(10): 4189-99, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15870288

RESUMEN

The gastrointestinal hormone peptide YY is a potent inhibitor of food intake and is expressed early during differentiation of intestinal and pancreatic endocrine cells. In order to better understand the role of peptide YY in energy homeostasis and development, we created mice with a targeted deletion of the peptide YY gene. All intestinal and pancreatic endocrine cells developed normally in the absence of peptide YY with the exception of pancreatic polypeptide (PP) cells, indicating that peptide YY expression was not required for terminal differentiation. We used recombination-based cell lineage trace to determine if peptide YY cells were progenitors for gastrointestinal endocrine cells. Peptide YY(+) cells gave rise to all L-type enteroendocrine cells and to islet partial differential and PP cells. In the pancreas, approximately 40% of pancreatic alpha and rare beta cells arose from peptide YY(+) cells, suggesting that most beta cells and surprisingly the majority of alpha cells are not descendants of peptide YY(+)/glucagon-positive/insulin-positive cells that appear during early pancreagenesis. Despite the anorectic effects of exogenous peptide YY(3-36) following intraperitoneal administration, mice lacking peptide YY showed normal growth, food intake, energy expenditure, and responsiveness to peptide YY(3-36). These observations suggest that targeted disruption of the peptide YY gene does not perturb terminal endocrine cell differentiation or the control of food intake and energy homeostasis.


Asunto(s)
Diferenciación Celular , Fenómenos Fisiológicos del Sistema Digestivo , Sistema Endocrino/fisiología , Metabolismo Energético , Homeostasis , Péptido YY/fisiología , Animales , Linaje de la Célula , Sistema Digestivo/citología , Ingestión de Alimentos , Sistema Endocrino/citología , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Ratones , Ratones Transgénicos , Péptido YY/deficiencia , Péptido YY/genética , Transgenes/genética , Aumento de Peso
14.
Mol Endocrinol ; 21(9): 2056-70, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17550981

RESUMEN

Androgen receptor (AR) plays an important role in normal prostate function as well as in the etiology of prostate cancer. Activation of AR is dictated by hormone binding and by interactions with coregulators. Several of these coregulators are known targets of Ras-related signals. Recent evidence suggests that Ras activation may play a causal role in the progression of prostate cancer toward a more malignant and hormone-insensitive phenotype. In the present study, we used a transcription factor-transcription factor interaction array method to identify the zinc finger protein Ras-responsive element binding protein (RREB-1) as a partner and coregulator of AR. In LNCaP prostate cancer cells, RREB-1 was found to be present in a complex with endogenous AR as determined by coimmunoprecipitation, glutathione S-transferase pull down, and immunofluorescence analyses. RREB-1 bound to the prostate-specific antigen (PSA) promoter as assessed by chromatin immunoprecipitation. Transient expression of RREB-1 down-regulated AR-mediated promoter activity and suppressed expression of PSA protein. The repressor activity of RREB-1 was significantly attenuated by cotransfection of activated Ras. Moreover, expression of the dominant-negative N-17-Ras or, alternatively, use of the MAPK kinase inhibitor PD98059 [2-(2-amino-3-methyoxyphenyl)-4H-1-benzopyran-4-one] abolished the effect of Ras in attenuating RREB-1-mediated repression. Furthermore, inhibition of RREB-1 expression by RNA interference enhanced the effect of Ras on PSA promoter activity and PSA expression. In addition, activation of the Ras pathway depleted AR from the RREB-1/AR complex. Collectively, our data for the first time identify RREB-1 as a repressor of AR and further implicate the Ras/MAPK kinase pathway as a likely antagonist of the inhibitory effects of RREB-1 on androgenic signaling.


Asunto(s)
Andrógenos/fisiología , Proteínas de Unión al ADN/fisiología , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/fisiología , Dedos de Zinc/fisiología , Anticuerpos/fisiología , Línea Celular , Humanos , Masculino , Receptores Androgénicos/inmunología
15.
J Vis Exp ; (139)2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30320764

RESUMEN

Enterochromaffin (EC) cells in the gastrointestinal (GI) epithelium constitute the largest subpopulation of enteroendocrine cells. As specialized sensory cells, EC cells sense luminal stimuli and convert them into serotonin (5-hyroxytryptamine, 5-HT) release events. However, the electrophysiology of these cells is poorly understood because they are difficult to culture and to identify. The method presented in this paper outlines primary EC cell cultures optimized for single cell electrophysiology. This protocol utilizes a transgenic cyan fluorescent protein (CFP) reporter to identify mouse EC cells in mixed primary cultures, advancing the approach to obtaining high-quality recordings of whole cell electrophysiology in voltage- and current-clamp modes.


Asunto(s)
Fenómenos Electrofisiológicos , Células Enterocromafines/fisiología , Animales , Células Cultivadas , Ratones
16.
Mol Cell Biol ; 23(1): 259-71, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12482979

RESUMEN

The basic helix-loop-helix protein BETA2/NeuroD activates transcription of the secretin gene and is essential for terminal differentiation of secretin-producing enteroendocrine cells. However, in heterodimeric complexes with its partner basic helix-loop-helix proteins, BETA2 does not appear to be a strong activator of transcription by itself. Mutational analysis of a proximal enhancer in the secretin gene identified several cis-acting elements in addition to the E-box binding site for BETA2. We identified by expression cloning the zinc finger protein RREB-1, also known to exist as a longer form, Finb, as the protein binding to one of the mutationally sensitive elements. Finb/RREB-1 lacks an intrinsic activation domain and by itself did not activate secretin gene transcription. Here we show that Finb/RREB-1 can associate with BETA2 to enhance its transcription-activating function. Both DNA binding and physical interaction of Finb/RREB-1 with BETA2 are required to potentiate transcription. Thus, Finb/RREB-1 does not function as a classical activator of transcription that recruits an activation domain to a DNA-protein complex. Finb/RREB-1 may be distinguished from coactivators, which increase transcription without sequence-specific DNA binding. We suggest that Finb/RREB-1 should be considered a potentiator of transcription, representing a distinct category of transcription-regulating proteins.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa , Proteínas de Unión al ADN/metabolismo , Regiones Promotoras Genéticas , Secretina/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Liasas de Carbono-Oxígeno/genética , Liasas de Carbono-Oxígeno/metabolismo , Células Cultivadas , Cricetinae , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Secuencias Hélice-Asa-Hélice , Humanos , Datos de Secuencia Molecular , Mutación , Secuencias Reguladoras de Ácidos Nucleicos , Secretina/metabolismo , Homología de Secuencia de Aminoácido , Transactivadores/química , Transactivadores/genética , Factores de Transcripción/genética , Transcripción Genética , Dedos de Zinc
17.
FEBS Lett ; 591(1): 205-212, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27880001

RESUMEN

The mechanism underlying transcriptional coactivation by the corepressor C-terminal-binding protein (CtBP) is not established. We previously found that CtBP co-occupies several actively transcribed endocrine genes with the transcription factor NeuroD1 to paradoxically increase transcription by recruiting KDM1A and CoREST. While the importance of the oligomeric form of CtBP for corepression is well established, the role of oligomerization in transcriptional coactivation has received little attention. Here, we examined the importance of the oligomeric state of CtBP for coactivation of NeuroD1-dependent transcription by expressing a CtBP dimerization mutant in cells depleted of endogenous CtBP. Dimerization mutants failed to increase transcription or to associate with KDM1A and CoREST, suggesting that oligomeric, but not monomeric CtBP is required to recruit other proteins needed to activate transcription.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Multimerización de Proteína , Transcripción Genética , Línea Celular , Regulación de la Expresión Génica , Humanos , Proteínas Mutantes/metabolismo , Mutación/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo
18.
Sci Rep ; 7(1): 15650, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29142310

RESUMEN

In the gastrointestinal (GI) epithelium, enterochromaffin (EC) cells are enteroendocrine cells responsible for producing >90% of the body's serotonin (5-hydroxytryptamine, 5-HT). However, the molecular mechanisms of EC cell function are poorly understood. Here, we found that EC cells in mouse primary cultures fired spontaneous bursts of action potentials. We examined the repertoire of voltage-gated sodium channels (NaV) in fluorescence-sorted mouse EC cells and found that Scn3a was highly expressed. Scn3a-encoded NaV1.3 was specifically and densely expressed at the basal side of both human and mouse EC cells. Using electrophysiology, we found that EC cells expressed robust NaV1.3 currents, as determined by their biophysical and pharmacologic properties. NaV1.3 was not only critical for generating action potentials in EC cells, but it was also important for regulating 5-HT release by these cells. Therefore, EC cells use Scn3a-encoded voltage-gated sodium channel NaV1.3 for electrical excitability and 5-HT release. NaV1.3-dependent electrical excitability and its contribution to 5-HT release is a novel mechanism of EC cell function.


Asunto(s)
Células Enterocromafines/metabolismo , Canal de Sodio Activado por Voltaje NAV1.3/genética , Serotonina/metabolismo , Canales de Sodio Activados por Voltaje/genética , Potenciales de Acción , Animales , Fenómenos Biofísicos , Electrofisiología , Células Enterocromafines/efectos de los fármacos , Células Enteroendocrinas/efectos de los fármacos , Células Enteroendocrinas/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Ratones , Canal de Sodio Activado por Voltaje NAV1.3/metabolismo , Cultivo Primario de Células , Serotonina/biosíntesis , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio Activados por Voltaje/metabolismo
19.
PLoS One ; 10(6): e0128035, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26030886

RESUMEN

Production of olfactory bulb neurons occurs continuously in the rodent brain. Little is known, however, about cellular diversity in the glutamatergic neuron subpopulation. In the central nervous system, the basic helix-loop-helix transcription factor NeuroD1 (ND1) is commonly associated with glutamatergic neuron development. In this study, we utilized ND1 to identify the different subpopulations of olfactory bulb glutamategic neurons and their progenitors, both in the embryo and postnatally. Using knock-in mice, transgenic mice and retroviral transgene delivery, we demonstrate the existence of several different populations of glutamatergic olfactory bulb neurons, the progenitors of which are ND1+ and ND1- lineage-restricted, and are temporally and regionally separated. We show that the first olfactory bulb glutamatergic neurons produced - the mitral cells - can be divided into molecularly diverse subpopulations. Our findings illustrate the complexity of neuronal diversity in the olfactory bulb and that seemingly homogenous neuronal populations can consist of multiple subpopulations with unique molecular signatures of transcription factors and expressing neuronal subtype-specific markers.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ácido Glutámico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/crecimiento & desarrollo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Linaje de la Célula , Expresión Génica Ectópica , Ventrículos Laterales/citología , Ventrículos Laterales/crecimiento & desarrollo , Ratones , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Proteínas de Dominio T Box/metabolismo
20.
Endocrinology ; 145(6): 2639-44, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15044355

RESUMEN

For over 30 yr, it has been known that enteroendocrine cells derive from common precursor cells in the intestinal crypts. Until recently, relatively little was understood about the events that result in commitment to endocrine differentiation or the segregation of over 10 different hormone-expressing cell types in the gastrointestinal tract. The earliest cell fate decisions appear to be regulated by the Notch signaling pathway. Notch is inactive in endocrine precursor cells, allowing for expression of the proendocrine basic helix-loop-helix proteins Math1 and neurogenin3. Differentiating precursor cells activate Notch in neighboring cells to switch off expression of proendocrine factors and inhibit endocrine differentiation. Math1 is the first factor involved in endocrine specification, committing cells to become one of three secretory lineages-goblet, Paneth, and enteroendocrine. Neurogenin3 appears to be a downstream target that is essential for endocrine cell differentiation. Events that control the segregation of each mature lineage from progenitor cells have not been characterized in detail. The transcription factors Pax4, Pax6, BETA2/NeuroD, and pancreatic-duodenal homeobox 1 have all been implicated in enteroendocrine differentiation. BETA2/NeuroD appears to coordinate secretin gene expression in S-type enteroendocrine cells with cell cycle arrest as cells terminally differentiate. Powerful genetic approaches have established the murine intestine as the most important model for studying enteroendocrine differentiation. Enteroendocrine cells in the mouse are remarkably similar to those in humans, making it likely that insights learned from the mouse may contribute to both our understanding and treatment of a variety of human disorders.


Asunto(s)
Glándulas Endocrinas/citología , Mucosa Intestinal/citología , Células Madre Multipotentes/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular/fisiología , Senescencia Celular , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Receptores Notch , Transducción de Señal , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA