Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Entropy (Basel) ; 24(2)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35205558

RESUMEN

The initial field has a crucial influence on numerical weather prediction (NWP). Data assimilation (DA) is a reliable method to obtain the initial field of the forecast model. At the same time, data are the carriers of information. Observational data are a concrete representation of information. DA is also the process of sorting observation data, during which entropy gradually decreases. Four-dimensional variational assimilation (4D-Var) is the most popular approach. However, due to the complexity of the physical model, the tangent linear and adjoint models, and other processes, the realization of a 4D-Var system is complicated, and the computational efficiency is expensive. Machine learning (ML) is a method of gaining simulation results by training a large amount of data. It achieves remarkable success in various applications, and operational NWP and DA are no exception. In this work, we synthesize insights and techniques from previous studies to design a pure data-driven 4D-Var implementation framework named ML-4DVAR based on the bilinear neural network (BNN). The framework replaces the traditional physical model with the BNN model for prediction. Moreover, it directly makes use of the ML model obtained from the simulation data to implement the primary process of 4D-Var, including the realization of the short-term forecast process and the tangent linear and adjoint models. We test a strong-constraint 4D-Var system with the Lorenz-96 model, and we compared the traditional 4D-Var system with ML-4DVAR. The experimental results demonstrate that the ML-4DVAR framework can achieve better assimilation results and significantly improve computational efficiency.

2.
Entropy (Basel) ; 24(3)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35327919

RESUMEN

The prediction of chaotic time series systems has remained a challenging problem in recent decades. A hybrid method using Hankel Alternative View Of Koopman (HAVOK) analysis and machine learning (HAVOK-ML) is developed to predict chaotic time series. HAVOK-ML simulates the time series by reconstructing a closed linear model so as to achieve the purpose of prediction. It decomposes chaotic dynamics into intermittently forced linear systems by HAVOK analysis and estimates the external intermittently forcing term using machine learning. The prediction performance evaluations confirm that the proposed method has superior forecasting skills compared with existing prediction methods.

3.
ScientificWorldJournal ; 2014: 928765, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24511303

RESUMEN

We present a new numerical method to get the approximate solutions of fractional differential equations. A new operational matrix of integration for fractional-order Legendre functions (FLFs) is first derived. Then a modified variational iteration formula which can avoid "noise terms" is constructed. Finally a numerical method based on variational iteration method (VIM) and FLFs is developed for fractional differential equations (FDEs). Block-pulse functions (BPFs) are used to calculate the FLFs coefficient matrices of the nonlinear terms. Five examples are discussed to demonstrate the validity and applicability of the technique.


Asunto(s)
Algoritmos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA