Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Mol Cell ; 81(4): 859-869.e8, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352108

RESUMEN

Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency.


Asunto(s)
5-Metilcitosina/metabolismo , Reprogramación Celular , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos , Epigénesis Genética , Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Proteínas de Unión al ADN/genética , Dioxigenasas , Embrión de Mamíferos/citología , Fibroblastos/citología , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Mutación , Células 3T3 NIH , Proteínas Proto-Oncogénicas/genética
2.
Nature ; 605(7908): 160-165, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35477756

RESUMEN

Colorectal cancer (CRC) is among the most frequent forms of cancer, and new strategies for its prevention and therapy are urgently needed1. Here we identify a metabolite signalling pathway that provides actionable insights towards this goal. We perform a dietary screen in autochthonous animal models of CRC and find that ketogenic diets exhibit a strong tumour-inhibitory effect. These properties of ketogenic diets are recapitulated by the ketone body ß-hydroxybutyrate (BHB), which reduces the proliferation of colonic crypt cells and potently suppresses intestinal tumour growth. We find that BHB acts through the surface receptor Hcar2 and induces the transcriptional regulator Hopx, thereby altering gene expression and inhibiting cell proliferation. Cancer organoid assays and single-cell RNA sequencing of biopsies from patients with CRC provide evidence that elevated BHB levels and active HOPX are associated with reduced intestinal epithelial proliferation in humans. This study thus identifies a BHB-triggered pathway regulating intestinal tumorigenesis and indicates that oral or systemic interventions with a single metabolite may complement current prevention and treatment strategies for CRC.


Asunto(s)
Neoplasias Colorrectales , Transducción de Señal , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Animales , Proliferación Celular , Transformación Celular Neoplásica , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/prevención & control , Humanos
3.
Genes Dev ; 32(15-16): 1020-1034, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068703

RESUMEN

RNA-binding proteins (RBPs) are expressed broadly during both development and malignant transformation, yet their mechanistic roles in epithelial homeostasis or as drivers of tumor initiation and progression are incompletely understood. Here we describe a novel interplay between RBPs LIN28B and IMP1 in intestinal epithelial cells. Ribosome profiling and RNA sequencing identified IMP1 as a principle node for gene expression regulation downstream from LIN28B In vitro and in vivo data demonstrate that epithelial IMP1 loss increases expression of WNT target genes and enhances LIN28B-mediated intestinal tumorigenesis, which was reversed when we overexpressed IMP1 independently in vivo. Furthermore, IMP1 loss in wild-type or LIN28B-overexpressing mice enhances the regenerative response to irradiation. Together, our data provide new evidence for the opposing effects of the LIN28B-IMP1 axis on post-transcriptional regulation of canonical WNT signaling, with implications in intestinal homeostasis, regeneration and tumorigenesis.


Asunto(s)
Carcinogénesis , Regulación de la Expresión Génica , Mucosa Intestinal/metabolismo , Proteínas de Unión al ARN/metabolismo , Regulón , Vía de Señalización Wnt , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Mucosa Intestinal/fisiología , Ratones , Ratones Transgénicos , Oncogenes , Biosíntesis de Proteínas , Proteínas de Unión al ARN/fisiología , Regeneración , Células Madre/metabolismo
4.
Cell ; 141(5): 872-83, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20471072

RESUMEN

The presence of two active X chromosomes (XaXa) is a hallmark of the ground state of pluripotency specific to murine embryonic stem cells (ESCs). Human ESCs (hESCs) invariably exhibit signs of X chromosome inactivation (XCI) and are considered developmentally more advanced than their murine counterparts. We describe the establishment of XaXa hESCs derived under physiological oxygen concentrations. Using these cell lines, we demonstrate that (1) differentiation of hESCs induces random XCI in a manner similar to murine ESCs, (2) chronic exposure to atmospheric oxygen is sufficient to induce irreversible XCI with minor changes of the transcriptome, (3) the Xa exhibits heavy methylation of the XIST promoter region, and (4) XCI is associated with demethylation and transcriptional activation of XIST along with H3K27-me3 deposition across the Xi. These findings indicate that the human blastocyst contains pre-X-inactivation cells and that this state is preserved in vitro through culture under physiological oxygen.


Asunto(s)
Cromosomas Humanos X/metabolismo , Células Madre Embrionarias/metabolismo , Oxígeno/metabolismo , Inactivación del Cromosoma X , Animales , Diferenciación Celular , Femenino , Histonas/metabolismo , Humanos , Cariotipificación , Masculino , Ratones , Estrés Oxidativo , Células Madre Pluripotentes/metabolismo
5.
EMBO Rep ; 23(11): e55209, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36120829

RESUMEN

The intestinal epithelium exhibits a rapid and efficient regenerative response to injury. Emerging evidence supports a model where plasticity of differentiated cells, particularly those in the secretory lineages, contributes to epithelial regeneration upon ablation of injury-sensitive stem cells. However, such facultative stem cell activity is rare within secretory populations. Here, we ask whether specific functional properties predict facultative stem cell activity. We utilize in vivo labeling combined with ex vivo organoid formation assays to evaluate how cell age and autophagic state contribute to facultative stem cell activity within secretory lineages. Strikingly, we find that cell age (time elapsed since cell cycle exit) does not correlate with secretory cell plasticity. Instead, high autophagic vesicle content predicts plasticity and resistance to DNA damaging injury independently of cell lineage. Our findings indicate that autophagic status prior to injury serves as a lineage-agnostic marker for the prospective identification of facultative stem cells.


Asunto(s)
Mucosa Intestinal , Células Madre , Estudios Prospectivos , Células Madre/metabolismo , Linaje de la Célula , Diferenciación Celular/genética
6.
Gut ; 72(12): 2294-2306, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37591698

RESUMEN

OBJECTIVE: Colorectal cancer (CRC) is a leading cause of cancer-related deaths, with the majority of cases initiated by inactivation of the APC tumour suppressor. This results in the constitutive activation of canonical WNT pathway transcriptional effector ß-catenin, along with induction of WNT feedback inhibitors, including the extracellular palmitoleoyl-protein carboxylesterase NOTUM which antagonises WNT-FZD receptor-ligand interactions. Here, we sought to evaluate the effects of NOTUM activity on CRC as a function of driver mutation landscape. DESIGN: Mouse and human colon organoids engineered with combinations of CRC driver mutations were used for Notum genetic gain-of-function and loss-of-function studies. In vitro assays, in vivo endoscope-guided orthotopic organoid implantation assays and transcriptomic profiling were employed to characterise the effects of Notum activity. Small molecule inhibitors of Notum activity were used in preclinical therapeutic proof-of-principle studies targeting oncogenic Notum activity. RESULTS: NOTUM retains tumour suppressive activity in APC-null adenomas despite constitutive ß-catenin activity. Strikingly, on progression to adenocarcinoma with P53 loss, NOTUM becomes an obligate oncogene. These phenotypes are Wnt-independent, resulting from differential activity of NOTUM on glypican 1 and 4 in early-stage versus late-stage disease, respectively. Ultimately, preclinical mouse models and human organoid cultures demonstrate that pharmacological inhibition of NOTUM is highly effective in arresting primary adenocarcinoma growth and inhibiting metastatic colonisation of distal organs. CONCLUSIONS: Our findings that a single agent targeting the extracellular enzyme NOTUM is effective in treating highly aggressive, metastatic adenocarcinomas in preclinical mouse models and human organoids make NOTUM and its glypican targets therapeutic vulnerabilities in advanced CRC.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Mutación , Vía de Señalización Wnt/genética , Cateninas/genética , Cateninas/metabolismo , Cateninas/farmacología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética
7.
Mol Psychiatry ; 27(6): 2751-2765, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35444258

RESUMEN

Autism spectrum disorders (ASDs) are common neurodevelopmental disorders characterized by deficits in social interactions and communication, restricted interests, and repetitive behaviors. Despite extensive study, the molecular targets that control ASD development remain largely unclear. Here, we report that the dormancy of quiescent neural stem cells (qNSCs) is a therapeutic target for controlling the development of ASD phenotypes driven by Shank3 deficiency. Using single-cell RNA sequencing (scRNA-seq) and transposase accessible chromatin profiling (ATAC-seq), we find that abnormal epigenetic features including H3K4me3 accumulation due to up-regulation of Kmt2a levels lead to increased dormancy of qNSCs in the absence of Shank3. This result in decreased active neurogenesis in the Shank3 deficient mouse brain. Remarkably, pharmacological and molecular inhibition of qNSC dormancy restored adult neurogenesis and ameliorated the social deficits observed in Shank3-deficient mice. Moreover, we confirmed restored human qNSC activity rescues abnormal neurogenesis and autism-like phenotypes in SHANK3-targeted human NSCs. Taken together, our results offer a novel strategy to control qNSC activity as a potential therapeutic target for the development of autism.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Células-Madre Neurales , Animales , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Modelos Animales de Enfermedad , Ratones , Proteínas de Microfilamentos/genética , Mutación , Proteínas del Tejido Nervioso/genética
8.
Cell ; 133(2): 250-64, 2008 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-18423197

RESUMEN

Pluripotent cells can be derived from fibroblasts by ectopic expression of defined transcription factors. A fundamental unresolved question is whether terminally differentiated cells can be reprogrammed to pluripotency. We utilized transgenic and inducible expression of four transcription factors (Oct4, Sox2, Klf4, and c-Myc) to reprogram mouse B lymphocytes. These factors were sufficient to convert nonterminally differentiated B cells to a pluripotent state. However, reprogramming of mature B cells required additional interruption with the transcriptional state maintaining B cell identity by either ectopic expression of the myeloid transcription factor CCAAT/enhancer-binding-protein-alpha (C/EBPalpha) or specific knockdown of the B cell transcription factor Pax5. Multiple iPS lines were clonally derived from both nonfully and fully differentiated B lymphocytes, which gave rise to adult chimeras with germline contribution, and to late-term embryos when injected into tetraploid blastocysts. Our study provides definite proof for the direct nuclear reprogramming of terminally differentiated adult cells to pluripotency.


Asunto(s)
Linfocitos B/citología , Diferenciación Celular , Células Madre Pluripotentes/citología , Animales , Núcleo Celular/genética , Células Madre Embrionarias/citología , Humanos , Factor 4 Similar a Kruppel , Ratones , Factores de Transcripción/metabolismo
9.
Stem Cells ; 39(3): 296-305, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33438789

RESUMEN

Skeletal progenitor/stem cells (SSCs) play a critical role in postnatal bone growth and maintenance. Telomerase (Tert) activity prevents cellular senescence and is required for maintenance of stem cells in self-renewing tissues. Here we investigated the role of mTert-expressing cells in postnatal mouse long bone and found that mTert expression is enriched at the time of adolescent bone growth. mTert-GFP+ cells were identified in regions known to house SSCs, including the metaphyseal stroma, growth plate, and the bone marrow. We also show that mTert-expressing cells are a distinct SSC population with enriched colony-forming capacity and contribute to multiple mesenchymal lineages, in vitro. In contrast, in vivo lineage-tracing studies identified mTert+ cells as osteochondral progenitors and contribute to the bone-forming cell pool during endochondral bone growth with a subset persisting into adulthood. Taken together, our results show that mTert expression is temporally regulated and marks SSCs during a discrete phase of transitional growth between rapid bone growth and maintenance.


Asunto(s)
Células Epiteliales/metabolismo , Células Madre/metabolismo , Telomerasa/metabolismo , Animales , Médula Ósea/metabolismo , Ciclo Celular/fisiología , Proliferación Celular/fisiología , Senescencia Celular/fisiología , Ratones
10.
Scand J Gastroenterol ; 56(7): 791-805, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33941035

RESUMEN

Aim: Recovery of damaged mucosal surfaces following inflammatory insult requires diverse regenerative mechanisms that remain poorly defined. Previously, we demonstrated that the reparative actions of Trefoil Factor 3 (TFF3) depend upon the enigmatic receptor, leucine rich repeat and immunoglobulin-like domain containing nogo receptor 2 (LINGO2). This study examined the related orphan receptor LINGO3 in the context of intestinal tissue damage to determine whether LINGO family members are generally important for mucosal wound healing and maintenance of the intestinal stem cell (ISC) compartment needed for turnover of mucosal epithelium.Methods and Results: We find that LINGO3 is broadly expressed on human enterocytes and sparsely on discrete cells within the crypt niche, that contains ISCs. Loss of function studies indicate that LINGO3 is involved in recovery of normal intestinal architecture following dextran sodium sulfate (DSS)-induced colitis, and that LINGO3 is needed for therapeutic action of the long acting TFF2 fusion protein (TFF2-Fc), including a number of signaling pathways critical for cell proliferation and wound repair. LINGO3-TFF2 protein-protein interactions were relatively weak however and LINGO3 was only partially responsible for TFF2 induced MAPK signaling suggesting additional un-identified components of a receptor complex. However, deficiency in either TFF2 or LINGO3 abrogated budding/growth of intestinal organoids and reduced expression of the intestinal ISC gene leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), indicating homologous roles for these proteins in tissue regeneration, possibly via regulation of ISCs in the crypt niche.Conclusion: We propose that LINGO3 serves a previously unappreciated role in promoting mucosal wound healing.


Asunto(s)
Colitis , Mucosa Intestinal , Humanos , Organoides , Factor Trefoil-2 , Cicatrización de Heridas
11.
Gastroenterology ; 156(8): 2281-2296.e6, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30779922

RESUMEN

BACKGROUND & AIMS: Levels of microRNA 31 (MIR31) are increased in intestinal tissues from patients with inflammatory bowel diseases and colitis-associated neoplasias. We investigated the effects of this microRNA on intestinal inflammation by studying mice with colitis. METHODS: We obtained colon biopsy samples from 82 patients with ulcerative colitis (UC), 79 patients with Crohn's disease (CD), and 34 healthy individuals (controls) at Shanghai Tenth People's Hospital. MIR31- knockout mice and mice with conditional disruption of Mir31 specifically in the intestinal epithelium (MIR31 conditional knockouts) were given dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzene sulfonic acid (TNBS) to induce colitis. We performed chromatin immunoprecipitation and luciferase assays to study proteins that regulate expression of MIR31, including STAT3 and p65, in LOVO colorectal cancer cells and organoids derived from mouse colon cells. Partially hydrolyzed alpha-lactalbumin was used to generate peptosome nanoparticles, and MIR31 mimics were loaded onto their surface using electrostatic adsorption. Peptosome-MIR31 mimic particles were encapsulated into oxidized konjac glucomannan (OKGM) microspheres, which were administered by enema into the large intestines of mice with DSS-induced colitis. Intestinal tissues were collected and analyzed by histology and immunohistochemistry. RESULTS: Levels of MIR31 were increased in inflamed mucosa from patients with CD or UC, and from mice with colitis, compared with controls. STAT3 and nuclear factor-κB activated transcription of MIR31 in colorectal cancer cells and organoids in response to tumor necrosis factor and interleukin (IL)6. MIR31-knockout and conditional-knockout mice developed more severe colitis in response to DSS and TNBS, with increased immune responses, compared with control mice. MIR31 bound to 3' untranslated regions of Il17ra and Il7r messenger RNAs (RNAs) (which encode receptors for the inflammatory cytokines IL17 and IL7) and Il6st mRNA (which encodes GP130, a cytokine signaling protein). These mRNAs and proteins were greater in MIR31-knockout mice with colitis, compared with control mice; MIR31 and MIR31 mimics inhibited their expression. MIR31 also promoted epithelial regeneration by regulating the WNT and Hippo signaling pathways. OKGM peptosome-MIR31 mimic microspheres localized to colonic epithelial cells in mice with colitis; they reduced the inflammatory response, increased body weight and colon length, and promoted epithelial cell proliferation. CONCLUSIONS: MIR31, increased in colon tissues from patients with CD or UC, reduces the inflammatory response in colon epithelium of mice by preventing expression of inflammatory cytokine receptors (Il7R and Il17RA) and signaling proteins (GP130). MIR31 also regulates the WNT and Hippo signaling pathways to promote epithelial regeneration following injury. OKGM peptosome-MIR31 microspheres localize to the colon epithelium of mice to reduce features of colitis. Transcript Profiling: GSE123556.


Asunto(s)
Biomarcadores/metabolismo , Colitis Ulcerosa/patología , Enfermedad de Crohn/patología , Mucosa Intestinal/metabolismo , MicroARNs/metabolismo , Regeneración/fisiología , Animales , Biopsia con Aguja , Estudios de Casos y Controles , China , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Microesferas , ARN Mensajero/metabolismo , Distribución Aleatoria , Transducción de Señal
12.
J Biol Chem ; 293(45): 17646-17660, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30242124

RESUMEN

MicroRNAs (miRs) and Hox transcription factors have decisive roles in postnatal bone formation and homeostasis. In silico analysis identified extensive interaction between HOXA cluster mRNA and microRNAs from the miR-23a cluster. However, Hox regulation by the miR-23a cluster during osteoblast differentiation remains undefined. We examined this regulation in preosteoblasts and in a novel miR-23a cluster knockdown mouse model. Overexpression and knockdown of the miR-23a cluster in preosteoblasts decreased and increased, respectively, the expression of the proteins HOXA5, HOXA10, and HOXA11; these proteins' mRNAs exhibited significant binding with the miR-23a cluster miRNAs, and miRNA 3'-UTR reporter assays confirmed repression. Importantly, during periods correlating with development and differentiation of bone cells, we found an inverse pattern of expression between HoxA factors and members of the miR-23a cluster. HOXA5 and HOXA11 bound to bone-specific promoters, physically interacted with transcription factor RUNX2, and regulated bone-specific genes. Depletion of HOXA5 or HOXA11 in preosteoblasts also decreased cellular differentiation. Additionally, stable overexpression of the miR-23a cluster in osteoblasts decreased the recruitment of HOXA5 and HOXA11 to osteoblast gene promoters, significantly inhibiting histone H3 acetylation. Heterozygous miR-23a cluster knockdown female mice (miR-23a ClWT/ZIP) had significantly increased trabecular bone mass when compared with WT mice. Furthermore, miR-23a cluster knockdown in calvarial osteoblasts of these mice increased the recruitment of HOXA5 and HOXA11, with a substantial enrichment of promoter histone H3 acetylation. Taken together, these findings demonstrate that the miR-23a cluster is required for maintaining stage-specific HoxA factor expression during osteogenesis.


Asunto(s)
Regiones no Traducidas 3' , Diferenciación Celular , Proteínas de Homeodominio/metabolismo , MicroARNs/metabolismo , Familia de Multigenes , Osteoblastos/metabolismo , Fosfoproteínas/metabolismo , Acetilación , Animales , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Células HEK293 , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Humanos , Ratones , MicroARNs/genética , Osteoblastos/citología , Osteogénesis , Fosfoproteínas/genética , Factores de Transcripción
13.
Connect Tissue Res ; 59(sup1): 52-54, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29745807

RESUMEN

Current studies offer little insight on how epigenetic remodeling of bone-specific chromatin maintains bone mass in vivo. Understanding this gap and precise mechanism is pivotal for future therapeutic innovation to prevent bone loss. Recently, we found that low bone mass is associated with decreased H3K27 acetylation (activating histone modification) of bone specific gene promoters. Here, we aim to elucidate the epigenetic mechanisms by which a miRNA cluster controls bone synthesis and homeostasis by regulating chromatin accessibility and H3K27 acetylation. In order to decipher the epigenetic axis that regulates osteogenesis, we studied a drug inducible anti-miR-23a cluster (miR-23a ClZIP) knockdown mouse model. MiR-23a cluster knockdown (heterozygous) mice developed high bone mass. These mice displayed increased expression of Runx2 and Baf45a, essential factors for skeletogenesis; and decreased expression of Ezh2, a chromatin repressor indispensable for skeletogenesis. ChIP assays using miR-23a Cl knockdown calvarial cells revealed a BAF45A-EZH2 epigenetic antagonistic mechanism that maintains bone formation. Together, our findings support that the miR-23a Cl connection with tissue-specific RUNX2-BAF45A-EZH2 function is a novel molecular epigenetic axis through which a miRNA cluster orchestrates chromatin modification to elicit major effects on osteogenesis in vivo.


Asunto(s)
Diferenciación Celular/fisiología , Epigénesis Genética/fisiología , Osteoblastos/metabolismo , Osteogénesis/fisiología , Acetilación , Animales , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histonas/genética , Histonas/metabolismo , Ratones , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Osteoblastos/citología
14.
Brain ; 140(8): 2193-2209, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28899010

RESUMEN

The recent generation of induced neurons by direct lineage conversion holds promise for in vitro modelling of sporadic Alzheimer's disease. Here, we report the generation of induced neuron-based model of sporadic Alzheimer's disease in mice and humans, and used this system to explore the pathogenic mechanisms resulting from the sporadic Alzheimer's disease risk factor apolipoprotein E (APOE) ɛ3/4 allele. We show that mouse and human induced neurons overexpressing mutant amyloid precursor protein in the background of APOE ɛ3/4 allele exhibit altered amyloid precursor protein (APP) processing, abnormally increased production of amyloid-ß42 and hyperphosphorylation of tau. Importantly, we demonstrate that APOE ɛ3/4 patient induced neuron culture models can faithfully recapitulate molecular signatures seen in APOE ɛ3/4-associated sporadic Alzheimer's disease patients. Moreover, analysis of the gene network derived from APOE ɛ3/4 patient induced neurons reveals a strong interaction between APOE ɛ3/4 and another Alzheimer's disease risk factor, desmoglein 2 (DSG2). Knockdown of DSG2 in APOE ɛ3/4 induced neurons effectively rescued defective APP processing, demonstrating the functional importance of this interaction. These data provide a direct connection between APOE ɛ3/4 and another Alzheimer's disease susceptibility gene and demonstrate in proof of principle the utility of induced neuron-based modelling of Alzheimer's disease for therapeutic discovery.


Asunto(s)
Alelos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Neuronas/metabolismo , Péptidos beta-Amiloides/biosíntesis , Precursor de Proteína beta-Amiloide/biosíntesis , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Células Cultivadas , Técnicas de Reprogramación Celular , Desmogleína 2/genética , Fibroblastos/citología , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Modelos Neurológicos , Fragmentos de Péptidos/biosíntesis , Fosforilación , Proteínas tau/metabolismo
15.
PLoS Genet ; 11(5): e1005253, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26020521

RESUMEN

Hair follicles (HF) undergo precisely regulated recurrent cycles of growth, cessation, and rest. The transitions from anagen (growth), to catagen (regression), to telogen (rest) involve a physiological involution of the HF. This process is likely coordinated by a variety of mechanisms including apoptosis and loss of growth factor signaling. However, the precise molecular mechanisms underlying follicle involution after hair keratinocyte differentiation and hair shaft assembly remain poorly understood. Here we demonstrate that a highly conserved microRNA, miR-22 is markedly upregulated during catagen and peaks in telogen. Using gain- and loss-of-function approaches in vivo, we find that miR-22 overexpression leads to hair loss by promoting anagen-to-catagen transition of the HF, and that deletion of miR-22 delays entry to catagen and accelerates the transition from telogen to anagen. Ectopic activation of miR-22 results in hair loss due to the repression a hair keratinocyte differentiation program and keratinocyte progenitor expansion, as well as promotion of apoptosis. At the molecular level, we demonstrate that miR-22 directly represses numerous transcription factors upstream of phenotypic keratin genes, including Dlx3, Foxn1, and Hoxc13. We conclude that miR-22 is a critical post-transcriptional regulator of the hair cycle and may represent a novel target for therapeutic modulation of hair growth.


Asunto(s)
Diferenciación Celular/genética , Folículo Piloso/metabolismo , Queratinocitos/metabolismo , MicroARNs/biosíntesis , Alopecia/genética , Apoptosis/genética , Proliferación Celular/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Folículo Piloso/crecimiento & desarrollo , Humanos , Queratinas/biosíntesis , Queratinas/genética , MicroARNs/genética , Transducción de Señal/genética , Células Madre/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
16.
Gastroenterology ; 151(2): 298-310.e7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27237597

RESUMEN

BACKGROUND & AIMS: Intestinal homeostasis and regeneration after injury are controlled by 2 different types of cells: slow cycling, injury-resistant reserve intestinal stem cells (ISCs) and actively proliferative ISCs. Putative reserve ISCs have been identified using a variety of methods, including CreER insertions at Hopx or Bmi1 loci in mice and DNA label retention. Label-retaining cells (LRCs) include dormant stem cells in several tissues; in the intestine, LRCs appear to share some properties with reserve ISCs, which can be marked by reporter alleles. We investigated the relationships between these populations. METHODS: Studies were performed in Lgr5-EGFP-IRESCreERT2, Bmi1-CreERT2, Hopx-CreERT2, and TRE-H2BGFP::Hopx-CreERT2::lox-stop-lox-tdTomato mice. Intestinal epithelial cell populations were purified; we compared reporter allele-marked reserve ISCs and several LRC populations (marked by H2B-GFP retention) using histologic flow cytometry and functional and single-cell gene expression assays. RESULTS: LRCs were dynamic and their cellular composition changed with time. Short-term LRCs had properties of secretory progenitor cells undergoing commitment to the Paneth or enteroendocrine lineages, while retaining some stem cell activity. Long-term LRCs lost stem cell activity and were a homogenous population of terminally differentiated Paneth cells. Reserve ISCs marked with HopxCreER were primarily quiescent (in G0), with inactive Wnt signaling and robust stem cell activity. In contrast, most LRCs were in G1 arrest and expressed genes that are regulated by the Wnt pathway or are in the secretory lineage. CONCLUSIONS: LRCs are molecularly and functionally distinct from reporter-marked reserve ISCs. This information provides an important basis for future studies of relationships among ISC populations.


Asunto(s)
Diferenciación Celular , Intestinos/citología , Células Madre/fisiología , Animales , Citometría de Flujo , Expresión Génica , Ratones
17.
FASEB J ; 30(10): 3474-3488, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27383182

RESUMEN

Mammary epithelium is comprised of an inner layer of luminal epithelial cells and an outer layer of contractile myoepithelial cells with mesenchymal properties. These two compartments interact throughout mammary morphogenesis to form branching ducts during puberty and terminate in secretory alveoli during lactation. It is not known how the myoepithelial cell lineage is specified, nor how signals in myoepithelial cells contribute to lactogenesis. Here, we show that Numb and Numbl are enriched in mammary myoepithelial cells, with their expression peaking during pregnancy. We use conditional Numb- and Numbl-knockout mouse models to demonstrate that loss of Numb/Numbl compromised the myoepithelial layer and expanded the luminal layer, led epithelial cells to undergo epithelial-to-mesenchymal transition, and resulted in lactation failure as a result of abnormal alveolar formation during pregnancy. Numb and Numbl function via repression of the Notch signaling pathway and of the p53-p21 axis during mammary gland development. These findings highlight the importance of Numb and Numbl in the control of myoepithelial cell fate determination, epithelial identity, and lactogenesis.-Zhang Y., Li, F., Song, Y., Sheng, X., Ren, F., Xiong, K., Chen, L., Zhang, H., Liu, D., Lengner, C. J., Xue, L., Yu, Z. Numb and Numbl act to determine mammary myoepithelial cell fate, maintain epithelial identity, and support lactogenesis.


Asunto(s)
Diferenciación Celular/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Humanas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Mama/metabolismo , Linaje de la Célula , Células Epiteliales/citología , Epitelio/metabolismo , Femenino , Humanos , Ratones Transgénicos , Células Musculares/citología , Músculo Liso/metabolismo
18.
PLoS Genet ; 10(8): e1004515, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25102063

RESUMEN

Dynamic exchange of a subset of nucleosomes in vivo plays important roles in epigenetic inheritance of chromatin states, chromatin insulator function, chromosome folding, and the maintenance of the pluripotent state of embryonic stem cells. Here, we extend a pulse-chase strategy for carrying out genome-wide measurements of histone dynamics to several histone variants in murine embryonic stem cells and somatic tissues, recapitulating expected characteristics of the well characterized H3.3 histone variant. We extended this system to the less-studied MacroH2A2 variant, commonly described as a "repressive" histone variant whose accumulation in chromatin is thought to fix the epigenetic state of differentiated cells. Unexpectedly, we found that while large intergenic blocks of MacroH2A2 were stably associated with the genome, promoter-associated peaks of MacroH2A2 exhibited relatively rapid exchange dynamics in ES cells, particularly at highly-transcribed genes. Upon differentiation to embryonic fibroblasts, MacroH2A2 was gained primarily in additional long, stably associated blocks across gene-poor regions, while overall turnover at promoters was greatly dampened. Our results reveal unanticipated dynamic behavior of the MacroH2A2 variant in pluripotent cells, and provide a resource for future studies of tissue-specific histone dynamics in vivo.


Asunto(s)
Cromatina/genética , Células Madre Embrionarias/metabolismo , Epigenómica , Histonas/genética , Animales , Islas de CpG/genética , Células Madre Embrionarias/citología , Genoma , Histonas/metabolismo , Ratones , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas
19.
Dev Dyn ; 245(8): 822-33, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27264700

RESUMEN

BACKGROUND: Canonical Wnt pathway signaling is necessary for maintaining the proliferative capacity of mammalian intestinal crypt base columnar stem cells (CBCs). Furthermore, dysregulation of the Wnt pathway is a major contributor to disease, including oncogenic transformation of the intestinal epithelium. Given the critical importance of this pathway, numerous tools have been used as proxy measures for Wnt pathway activity, yet the relationship between Wnt target gene expression and reporter allele activity within individual cells at the crypt base remains unclear. RESULTS: Here, we describe a novel Axin2-CreERT2-tdTomato allele that efficiently marks both Wnt(High) CBCs and radioresistant reserve intestinal stem cells. We analyze the molecular and functional identity of Axin2-CreERT2-tdTomato-marked cells using single cell gene expression profiling and tissue regeneration assays and find that Axin2 reporter activity does not necessarily correlate with expression of Wnt target genes and, furthermore, that Wnt target genes themselves vary in their expression patterns at the crypt base. CONCLUSIONS: Wnt target genes and reporter alleles can vary greatly in their cell-type specificity, demonstrating that these proxies cannot be used interchangeably. Furthermore, Axin2-CreERT2-tdTomato is a robust marker of both active and reserve intestinal stem cells and is thus useful for understanding the intestinal stem cell compartment. Developmental Dynamics 245:822-833, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Células Madre/citología , Células Madre/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Proteína Axina/genética , Proteína Axina/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Inmunoquímica , Mucosa Intestinal/fisiología , Ratones , Ratones Endogámicos C57BL , Células Madre/fisiología , Vía de Señalización Wnt/genética
20.
Nature ; 462(7273): 595-601, 2009 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19898493

RESUMEN

Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be achieved by overexpression of Oct4, Sox2, Klf4 and c-Myc transcription factors, but only a minority of donor somatic cells can be reprogrammed to pluripotency. Here we demonstrate that reprogramming by these transcription factors is a continuous stochastic process where almost all mouse donor cells eventually give rise to iPS cells on continued growth and transcription factor expression. Additional inhibition of the p53/p21 pathway or overexpression of Lin28 increased the cell division rate and resulted in an accelerated kinetics of iPS cell formation that was directly proportional to the increase in cell proliferation. In contrast, Nanog overexpression accelerated reprogramming in a predominantly cell-division-rate-independent manner. Quantitative analyses define distinct cell-division-rate-dependent and -independent modes for accelerating the stochastic course of reprogramming, and suggest that the number of cell divisions is a key parameter driving epigenetic reprogramming to pluripotency.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , División Celular , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Factor 4 Similar a Kruppel , Ratones , Ratones SCID , Modelos Biológicos , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA