Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Front Oncol ; 13: 1036871, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051535

RESUMEN

Colorectal cancer (CRC) is the third highest incidence cancer and a leading cause of cancer mortality worldwide. To date, chemotherapeutic treatment of advanced CRC that has metastasized has a dismayed success rate of less than 30%. Further, most (80%) sporadic CRCs are microsatellite-stable and are refractory to immune checkpoint blockade therapy. KRAS is a gatekeeper gene in colorectal tumorigenesis. Nevertheless, KRAS is 'undruggable' due to its structure. Thus, focus has been diverted to develop small molecule inhibitors for its downstream effector such as ERK/MAPK. Despite intense research efforts for the past few decades, no small molecule inhibitor has been in clinical use for CRC. Antibody targeting KRAS itself is an attractive alternative. We developed a transient ex vivo patient-derived matched mucosa-tumor primary culture to assess whether anti-KRAS antibody can be internalized to bind and inactivate KRAS. We showed that anti-KRAS antibody can enter live mucosa-tumor cells and specifically aggregate KRAS in the cytoplasm, thus hindering its translocation to the inner plasma membrane. The mis-localization of KRAS reduces KRAS dwelling time at the site where it tethers to activate downstream effectors. We previously showed that expression of SOX9 was KRAS-mutation-dependent and possibly a better effector than ERK in CRC. Herein, we showed that anti-KRAS antibody treated tumor cells have less intense SOX9 cytoplasmic and nuclear staining compared to untreated cells. Our results demonstrated that internalized anti-KRAS antibody inhibits KRAS function in tumor. With an efficient intracellular antibody delivery system, this can be further developed as combinatorial therapeutics for CRC and other KRAS-driven cancers.

2.
PLoS One ; 14(5): e0215696, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31067275

RESUMEN

The transient build-up of DNA supercoiling during the translocation of replication forks threatens genome stability and is controlled by DNA topoisomerases (TOPs). This crucial process has been exploited with TOP poisons for cancer chemotherapy. However, pinpointing cellular determinants of the best clinical response to TOP poisons still remains enigmatic. Here, we present an integrated approach and demonstrate that endogenous and exogenous expression of the oncofetal high-mobility group AT-hook 2 (HMGA2) protein exhibited broad protection against the formation of hydroxyurea-induced DNA breaks in various cancer cells, thus corroborating our previously proposed model in which HMGA2 functions as a replication fork chaperone that forms a protective DNA scaffold at or close to stalled replication forks. We now further demonstrate that high levels of HMGA2 also protected cancer cells against DNA breaks triggered by the clinically important TOP1 poison irinotecan. This protection is most likely due to the recently identified DNA supercoil constraining function of HMGA2 in combination with exclusion of TOP1 from binding to supercoiled substrate DNA. In contrast, low to moderate HMGA2 protein levels surprisingly potentiated the formation of irinotecan-induced genotoxic covalent TOP1-DNA cleavage complexes. Our data from cell-based and several in vitro assays indicate that, mechanistically, this potentiating role involves enhanced drug-target interactions mediated by HMGA2 in ternary complexes with supercoiled DNA. Subtelomeric regions were found to be extraordinarily vulnerable to these genotoxic challenges induced by TOP1 poisoning, pointing at strong DNA topological barriers located at human telomeres. These findings were corroborated by an increased irinotecan sensitivity of patient-derived xenografts of colorectal cancers exhibiting low to moderate HMGA2 levels. Collectively, we uncovered a therapeutically important control mechanism of transient changes in chromosomal DNA topology that ultimately leads to enhanced human subtelomere stability.


Asunto(s)
Cromatina/metabolismo , Proteína HMGA2/metabolismo , Telómero/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Replicación del ADN/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Proteína HMGA2/genética , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA