Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
BMC Med ; 18(1): 262, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32962714

RESUMEN

BACKGROUND: High consumption of red and processed meat is commonly associated with increased cancer risk, particularly colorectal cancer. Antibodies against the red meat-derived carbohydrate N-glycolylneuraminic acid (Neu5Gc) exacerbate cancer in "human-like" mice. Human anti-Neu5Gc IgG and red meat are both independently proposed to increase cancer risk, yet how diet affects these antibodies is largely unknown. METHODS: We used world global data to demonstrate that colorectal cancer incidence and mortality are associated with increased national meat consumption. In a well-defined large cohort, we used glycomics to measure daily Neu5Gc intake from red meat and dairy, and investigated serum as well as affinity-purified anti-Neu5Gc antibodies. Based on 24-h dietary records, daily Neu5Gc intake was calculated for 19,621 subjects aged ≥ 18 years of the NutriNet-Santé study. Serum and affinity-purified anti-Neu5Gc antibodies were evaluated by ELISA and glycan microarrays in representative 120 individuals, each with at least eighteen 24-h dietary records (aged 45-60, Q1-Q4; aged > 60, Q1 and Q4; 10 men/women per quartile). RESULTS: We found that high-Neu5Gc diet, gender, and age affect the specificity, levels, and repertoires of anti-Neu5Gc IgG immune responses, but not their affinity. Men consumed more Neu5Gc than women, mostly from red meat (p = 0.0015), and exhibited higher overall serum anti-Neu5Gc IgG levels by ELISA (3.94 ng/µl versus 2.22 ng/µl, respectively; p = 0.039). Detailed glycan microarray analysis against 56 different glycans revealed high Neu5Gc-specificity with increased anti-Neu5Gc IgG and altered repertoires, associated with higher consumption of Neu5Gc from red meat and cow dairy. Affinity purification of serum anti-Neu5Gc antibodies revealed increased levels and biased array repertoire patterns, without an increase in antibody affinity, in individuals consuming higher Neu5Gc levels. Furthermore, in a high-meat diet, antibody diversity patterns on glycan microarrays shifted towards Neu5Gcα3-linked glycans, increasing the α3/α6-glycans ratio score. CONCLUSIONS: We found a clear link between the levels and repertoire of serum anti-Neu5Gc IgG and Neu5Gc intake from red meat and dairy. These precise rational methodologies allowed to develop a Gcemic index to simplify the assessment of Neu5Gc in foods that could potentially be adapted for dietary recommendations to reduce cancer risk.


Asunto(s)
Anticuerpos/sangre , Neoplasias/genética , Ácidos Neuramínicos/sangre , Animales , Carbohidratos , Estudios de Cohortes , Femenino , Francia , Humanos , Masculino , Ratones , Persona de Mediana Edad , Estudios Prospectivos
2.
Bioconjug Chem ; 30(5): 1565-1574, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30994337

RESUMEN

Sialic acids (Sias) cover vertebrate cell surface glycans. N-Acetylneuraminic acid (Neu5Ac) and its hydroxylated form N-glycolylneuraminic acid (Neu5Gc) are common Sia in mammals. Humans cannot synthesize Neu5Gc but accumulate it on cells through red-meat rich diets, generating numerous immunogenic Neu5Gc-neoantigens. Consequently, humans have diverse anti-Neu5Gc antibodies affecting xenotransplantation, cancer, atherosclerosis, and infertility. Anti-Neu5Gc antibodies circulate as IgG, IgM, and IgA isotypes; however, repertoires of the different isotypes in a large population have not been studied yet. Here, we used glycan microarrays to investigate anti-Neu5Gc IgGs and IgAs in intravenous immunoglobulin (IVIG) or pooled human IgA, respectively. Binding patterns on microarrays fabricated with Neu5Gc- and Neu5Ac-glycans, together with inhibition assays, revealed that different IVIG preparations have highly specific anti-Neu5Gc IgG reactivity with closely related repertoires, while IgAs show cross-reactivity against several Neu5Ac-glycans. Such different anti-Neu5Gc IgG/IgA repertoires in individuals could possibly mediate distinctive effects on human diseases.


Asunto(s)
Antígenos/inmunología , Dieta , Inmunoglobulina A/metabolismo , Inmunoglobulina G/metabolismo , Ácido N-Acetilneuramínico/inmunología , Humanos , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología
3.
Bioconjug Chem ; 30(1): 161-168, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30500162

RESUMEN

Recognition of carbohydrates by antibodies can be affected by antigen composition and density. This had been investigated in a variety of controllable multivalent systems using synthetic carbohydrate antigens, yet such effects on anticarbohydrate antibodies in circulating human serum have not been fully addressed thus far. All humans develop a polyclonal and diverse response against carbohydrates containing a nonhuman sialic acid form, N-glycolylneuraminic acid (Neu5Gc). This red meat-derived monosaccharide is incorporated into a diverse collection of human glycans resulting in circulating anti-Neu5Gc antibodies in human sera. Such antibodies can cause exacerbation of diseases mediated by chronic inflammation such as cancer and atherosclerosis. We aimed to evaluate how different presentation modes of Neu5Gc-glycans can affect the detection of anti-Neu5Gc IgGs in human serum. Here, we compare serum IgG recognition of Neu5Gc-containing glycoproteins, glycopeptides, and synthetic glycans. First, Neu5Gc-positive or Neu5Gc-deficient mouse strains were used to generate glycopeptides from serum glycoproteins. Then we developed a reproducible ELISA to screen human sera against Neu5Gc-positive glycopeptides for detection of human serum anti-Neu5Gc IgGs. Finally, we evaluated ELISA screens against glycopeptides in comparison with glycoproteins, as well as against elaborated arrays displaying synthetic Neu5Gc-glycans. Our results demonstrate that the presentation mode and diversity of Neu5Gc-glycans are critical for detection of the full collection of human serum anti-Neu5Gc IgGs.


Asunto(s)
Anticuerpos/sangre , Inmunoglobulina G/sangre , Ácidos Neuramínicos/metabolismo , Polisacáridos/metabolismo , Animales , Anticuerpos/inmunología , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ácidos Neuramínicos/inmunología , Polisacáridos/inmunología , Reproducibilidad de los Resultados
4.
Eur J Clin Invest ; 49(4): e13069, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30620396

RESUMEN

Antibodies of non-human mammals are glycosylated with carbohydrate antigens, such as galactose-α-1-3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc). These non-human carbohydrate antigens are highly immunogenic in humans due to loss-of-function mutations of the key genes involved in their synthesis. Such immunogenic carbohydrates are expressed on therapeutic polyclonal rabbit anti-human T-cell IgGs (anti-thymocyte globulin; ATG), the most popular induction treatment in allograft recipients. To decipher the quantitative and qualitative response against these antigens in immunosuppressed patients, particularly against Neu5Gc, which may induce endothelial inflammation in both the graft and the host. We report a prospective study of the antibody response against α-Gal and Neu5Gc-containing glycans following rabbit ATG induction compared to controls. We show a drop in the overall levels of anti-Neu5Gc antibodies at 6 and 12 months post-graft compared to the pre-existing levels due to the major early immunosuppression. However, in contrast, in a cross-sectional study there was a highly significant increase in anti-Neu5Gc IgGs levels at 6 months post-graft in the ATG-treated compared to non-treated patients(P = 0.007), with a clear hierarchy favouring anti-Neu5Gc over anti-Gal response. A sialoglycan microarray analysis revealed that the increased anti-Neu5Gc IgG response was still highly diverse against multiple different Neu5Gc-containing glycans. Furthermore, some of the ATG-treated patients developed a shift in their anti-Neu5Gc IgG repertoire compared with the baseline, recognizing different patterns of Neu5Gc-glycans. In contrast to Gal, Neu5Gc epitopes remain antigenic in severely immunosuppressed patients, who also develop an anti-Neu5Gc repertoire shift. The clinical implications of these observations are discussed.


Asunto(s)
Anticuerpos/inmunología , Inmunidad Celular/fisiología , Inmunoglobulina G/farmacología , Factores Inmunológicos/farmacología , Trasplante de Riñón/métodos , Ácidos Neuramínicos/inmunología , Adulto , Anciano , Anticuerpos/metabolismo , Estudios de Casos y Controles , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Timocitos/inmunología , Inmunología del Trasplante/fisiología , Trasplante Homólogo
5.
Xenotransplantation ; 26(6): e12535, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31293002

RESUMEN

Humans cannot synthesize N-glycolylneuraminic acid (Neu5Gc) but dietary Neu5Gc can be absorbed and deposited on endothelial cells (ECs) and diet-induced anti-Neu5Gc antibodies (Abs) develop early in human life. While the interaction of Neu5Gc and diet-induced anti-Neu5Gc Abs occurs in all normal individuals, endothelium activation by elicited anti-Neu5Gc Abs following a challenge with animal-derived materials, such as following xenotransplantation, had been postulated. Ten primary human EC preparations were cultured with affinity-purified anti-Neu5Gc Abs from human sera obtained before or after exposure to Neu5Gc-glycosylated rabbit IgGs (elicited Abs). RNAs of each EC preparation stimulated in various conditions by purified Abs were exhaustively sequenced. EC transcriptomic patterns induced by elicited anti-Neu5Gc Abs, compared with pre-existing ones, were analyzed. qPCR, cytokines/chemokines release, and apoptosis were tested on some EC preparations. The data showed that anti-Neu5Gc Abs induced 967 differentially expressed (DE) genes. Most DE genes are shared following EC activation by pre-existing or anti-human T-cell globulin (ATG)-elicited anti-Neu5Gc Abs. Compared with pre-existing anti-Neu5Gc Abs, which are normal component of ECs environment, elicited anti-Neu5Gc Abs down-regulated 66 genes, including master genes of EC function. Furthermore, elicited anti-Neu5Gc Abs combined with complement-containing serum down-regulated most transcripts mobilized by serum alone. Both types of anti-Neu5Gc Abs-induced a dose- and complement-dependent release of selected cytokines and chemokines. Altogether, these data show that, compared with pre-existing anti-Neu5Gc Abs, ATG-elicited anti-Neu5Gc Abs specifically modulate genes related to cytokine responses, MAPkinase cascades, chemotaxis, and integrins and do not skew the EC transcriptome toward a pro-inflammatory profile in vitro.


Asunto(s)
Anticuerpos/farmacología , Células Endoteliales/efectos de los fármacos , Endotelio/metabolismo , Transcriptoma/genética , Animales , Anticuerpos/inmunología , Células Endoteliales/inmunología , Humanos , Inmunoglobulina G/metabolismo , Transcriptoma/inmunología , Trasplante Heterólogo/métodos
6.
Chembiochem ; 2018 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-29575424

RESUMEN

Carbohydrate-protein interactions (CPIs) are involved in a wide range of biological phenomena. Hence, the characterization and presentation of carbohydrate epitopes that closely mimic the natural environment is one of the long-term goals of glycosciences. Inspired by the multivalency, heterogeneity and nature of carbohydrate ligand-mediated interactions, we constructed a combinatorial library of mannose and galactose homo- and hetero-glycodendrons to study CPIs. Microarray analysis of these glycodendrons with a wide range of biologically important plant and animal lectins revealed that oligosaccharide structures and heterogeneity interact with each other to alter binding preferences.

7.
Xenotransplantation ; 23(5): 381-92, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27610947

RESUMEN

BACKGROUND: The two common sialic acids (Sias) in mammals are N-acetylneuraminic acid (Neu5Ac) and its hydroxylated form N-glycolylneuraminic acid (Neu5Gc). Unlike most mammals, humans cannot synthesize Neu5Gc that is considered foreign and recognized by circulating antibodies. Thus, Neu5Gc is a potential xenogenic carbohydrate antigen in bioprosthetic heart valves (BHV) that tend to deteriorate in time within human patients. METHODS: We investigated Neu5Gc expression in non-engineered animal-derived cardiac tissues and in clinically used commercial BHV, and evaluated Neu5Gc immunogenicity on BHV through recognition by human anti-Neu5Gc IgG. RESULTS: Neu5Gc was detected by immunohistochemistry in porcine aortic valves and in porcine and bovine pericardium. Qualitative analysis of Sia linkages revealed Siaα2-3>Siaα2-6 on porcine/bovine pericardium while the opposite in porcine aortic/pulmonary valve cusps. Similarly, six commercial BHV containing either porcine aortic valve or porcine/bovine/equine pericardium revealed Siaα2-3>Siaα2-6 expression. Quantitative analysis of Sia by HPLC showed porcine/bovine pericardium express 4-fold higher Neu5Gc levels compared to the porcine aortic/pulmonary valves, with Neu5Ac at 6-fold over Neu5Gc. Likewise, Neu5Gc was expressed on commercial BHV (186.3±16.9 pmol Sia/µg protein), with Neu5Ac at 8-fold over Neu5Gc. Affinity-purified human anti-Neu5Gc IgG showing high specificity toward Neu5Gc-glycans (with no binding to Neu5Ac-glycans) on a glycan microarray, strongly bound to all tested commercial BHV, demonstrating Neu5Gc immune recognition in cardiac xenografts. CONCLUSIONS: We conclusively demonstrated Neu5Gc expression in native cardiac tissues, as well as in six commercial BHV. These Neu5Gc xeno-antigens were recognized by human anti-Neu5Gc IgG, supporting their immunogenicity. Altogether, these findings suggest BHV-Neu5Gc/anti-Neu5Gc may play a role in valve deterioration warranting further investigation.


Asunto(s)
Anticuerpos/inmunología , Válvulas Cardíacas/inmunología , Ácidos Neuramínicos/inmunología , Pericardio/inmunología , Trasplante Heterólogo , Animales , Bioprótesis , Bovinos , Porcinos , Trasplante Heterólogo/métodos
8.
Org Biomol Chem ; 14(46): 10812-10815, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27714250

RESUMEN

Sialic acids (Sias) are important terminal sugars on cell surfaces involved in a wide range of protein-carbohydrate interactions. Hence, agents modulating sias-mediated protein interactions are promising inhibitors or vaccine candidates. Here, we report the synthesis of Neu5Acα(2-6)Gal structural analogs and their binding to a series of siglecs. The results showed distinct binding patterns with conserved siglecs (hCD22 and mCD22) compared to rapid evolving siglecs (Siglecs -3 & -10).

9.
Nat Med ; 28(2): 283-294, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35177855

RESUMEN

Bioprosthetic heart valves (BHVs) are commonly used to replace severely diseased heart valves but their susceptibility to structural valve degeneration (SVD) limits their use in young patients. We hypothesized that antibodies against immunogenic glycans present on BHVs, particularly antibodies against the xenoantigens galactose-α1,3-galactose (αGal) and N-glycolylneuraminic acid (Neu5Gc), could mediate their deterioration through calcification. We established a large longitudinal prospective international cohort of patients (n = 1668, 34 ± 43 months of follow-up (0.1-182); 4,998 blood samples) to investigate the hemodynamics and immune responses associated with BHVs up to 15 years after aortic valve replacement. Early signs of SVD appeared in <5% of BHV recipients within 2 years. The levels of both anti-αGal and anti-Neu5Gc IgGs significantly increased one month after BHV implantation. The levels of these IgGs declined thereafter but anti-αGal IgG levels declined significantly faster in control patients compared to BHV recipients. Neu5Gc, anti-Neu5Gc IgG and complement deposition were found in calcified BHVs at much higher levels than in calcified native aortic valves. Moreover, in mice, anti-Neu5Gc antibodies were unable to promote calcium deposition on subcutaneously implanted BHV tissue engineered to lack αGal and Neu5Gc antigens. These results indicate that BHVs manufactured using donor tissues deficient in αGal and Neu5Gc could be less prone to immune-mediated deterioration and have improved durability.


Asunto(s)
Bioprótesis , Galactosa , Animales , Formación de Anticuerpos , Válvula Aórtica/patología , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica , Calcinosis , Humanos , Inmunoglobulina G , Ratones , Polisacáridos , Estudios Prospectivos
10.
Chem Commun (Camb) ; 57(28): 3516-3519, 2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33704312

RESUMEN

We report the discovery of a potential heparan sulfate (HS) ligand to target several growth factors using 13 unique HS tetrasaccharide ligands. By employing an HS microarray and SPR, we deciphered the crucial structure-binding relationship of these glycans with the growth factors BMP2, VEGF165, HB-EGF, and FGF2. Notably, GlcNHAc(6-O-SO3-)-IdoA(2-O-SO3-) (HT-2,6S-NAc) tetrasaccharide showed strong binding with the VEGF165 growth factor. In vitro vascular endothelial cell proliferation, migration and angiogenesis was inhibited in the presence of VEGF165 and HT-2,6S-NAc or HT-6S-NAc, revealing the potential therapeutic role of these synthetic HS ligands.


Asunto(s)
Heparitina Sulfato/farmacología , Neovascularización Patológica/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Heparitina Sulfato/síntesis química , Heparitina Sulfato/química , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ligandos , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
ACS Chem Biol ; 16(11): 2481-2489, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34586794

RESUMEN

Recently, the activity of heparan sulfate (HS) has led to the discovery of many drug candidates that have the potential to impact both medical science and human health. However, structural diversity and synthetic challenges impede the progress of HS research. Here, we report a library of novel l-iduronic acid (IdoA)-based HS mimics that are highly tunable in conformation plasticity and sulfation patterns to produce many of the functions of native HS oligosaccharides. The NMR analysis of HS mimics confirmed that 4-O-sulfation enhances the population of the 1C4 geometry. Interestingly, the 1C4 conformer becomes exclusive upon additional 2-O-sulfation. HS mimic microarray binding studies with different growth factors showed that selectivity and avidity are greatly modulated by the oligosaccharide length, sulfation code, and IdoA conformation. Particularly, we have identified 4-O-sulfated IdoA disaccharide (I-21) as a potential ligand for vascular endothelial growth factor (VEGF165), which in a multivalent display modulated endothelial cell proliferation, migration, and angiogenesis. Overall, these results encourage the consideration of HS mimics for therapeutic applications.


Asunto(s)
Heparitina Sulfato/química , Ácido Idurónico/química , Imitación Molecular , Oligosacáridos/química , Sulfatos/química , Espectroscopía de Resonancia Magnética/métodos , Relación Estructura-Actividad
12.
Chem Sci ; 12(10): 3674-3681, 2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33889380

RESUMEN

Achieving selective inhibition of chemokines with structurally well-defined heparan sulfate (HS) oligosaccharides can provide important insights into cancer cell migration and metastasis. However, HS is highly heterogeneous in chemical composition, which limits its therapeutic use. Here, we report the rational design and synthesis of N-unsubstituted (NU) and N-acetylated (NA) heparan sulfate tetrasaccharides that selectively inhibit structurally homologous chemokines. HS analogs were produced by divergent synthesis, where fully protected HS tetrasaccharide precursor was subjected to selective deprotection and regioselectively O-sulfated, and O-phosphorylated to obtain 13 novel HS tetrasaccharides. HS microarray and SPR analysis with a wide range of chemokines revealed the structural significance of sulfation patterns and NU domain in chemokine activities for the first time. Particularly, HT-3,6S-NH revealed selective recognition by CCL2 chemokine. Further systematic interrogation of the role of HT-3,6S-NH in cancer demonstrated an effective blockade of CCL2 and its receptor CCR2 interactions, thereby impairing cancer cell proliferation, migration and invasion, a step towards designing novel drug molecules.

13.
J Med Chem ; 64(6): 3367-3380, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33683903

RESUMEN

Achieving selective inhibition of chemokine activity by structurally well-defined heparan sulfate (HS) or HS mimetic molecules can provide important insights into their roles in individual physiological and pathological cellular processes. Here, we report a novel tailor-made HS mimetic, which furnishes an exclusive iduronic acid (IdoA) scaffold with different sulfation patterns and oligosaccharide chain lengths as potential ligands to target chemokines. Notably, highly sulfated-IdoA tetrasaccharide (I-45) exhibited strong binding to CCL2 chemokine thereby blocking CCL2/CCR2-mediated in vitro cancer cell invasion and metastasis. Taken together, IdoA-based HS mimetics offer an alternative HS substrate to generate selective and efficient inhibitors for chemokines and pave the way to a wide range of new therapeutic applications in cancer biology and immunology.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Heparitina Sulfato/química , Heparitina Sulfato/farmacología , Ácido Idurónico/química , Ácido Idurónico/farmacología , Línea Celular Tumoral , Quimiocina CCL2/metabolismo , Humanos , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Receptores CCR2/metabolismo
14.
J Mol Biol ; 433(15): 167099, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34119488

RESUMEN

Glycans decorate the cell surface, secreted glycoproteins and glycolipids, and altered glycans are often found in cancers. Despite their high diagnostic and therapeutic potential, however, glycans are polar and flexible molecules that are quite challenging for the development and design of high-affinity binding antibodies. To understand the mechanisms by which glycan neoantigens are specifically recognized by antibodies, we analyze the biomolecular recognition of the tumor-associated carbohydrate antigen CA19-9 by two distinct antibodies using X-ray crystallography. Despite the potential plasticity of glycans and the very different antigen-binding surfaces presented by the antibodies, both structures reveal an essentially identical extended CA19-9 conformer, suggesting that this conformer's stability selects the antibodies. Starting from the bound structure of one of the antibodies, we use the AbLIFT computational algorithm to design a variant with seven core mutations in the variable domain's light-heavy chain interface that exhibits tenfold improved affinity for CA19-9. The results reveal strategies used by antibodies to specifically recognize glycan antigens and show how automated antibody-optimization methods may be used to enhance the clinical potential of existing antibodies.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Antígeno CA-19-9/inmunología , Biología Computacional/métodos , Algoritmos , Animales , Anticuerpos Monoclonales/genética , Afinidad de Anticuerpos , Cristalografía por Rayos X , Humanos , Ratones , Modelos Moleculares , Mutación , Conformación Proteica
15.
iScience ; 24(5): 102479, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33937725

RESUMEN

Neutralizing antibodies represent a valuable therapeutic approach to countermeasure the current COVID-19 pandemic. Emergence of SARS-CoV-2 variants emphasizes the notion that antibody treatments need to rely on highly neutralizing monoclonal antibodies (mAbs), targeting several distinct epitopes for circumventing therapy escape mutants. Previously, we reported efficient human therapeutic mAbs recognizing epitopes on the spike receptor-binding domain (RBD) of SARS-CoV-2. Here we report the isolation, characterization, and recombinant production of 12 neutralizing human mAbs, targeting three distinct epitopes on the spike N-terminal domain of the virus. Neutralization mechanism of these antibodies involves receptors other than the canonical hACE2 on target cells, relying both on amino acid and N-glycan epitope recognition, suggesting alternative viral cellular portals. Two selected mAbs demonstrated full protection of K18-hACE2 transgenic mice when administered at low doses and late post-exposure, demonstrating the high potential of the mAbs for therapy of SARS-CoV-2 infection.

16.
ACS Nano ; 13(3): 2936-2947, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30840433

RESUMEN

Cancer immunotherapy aims to harness the immune system to combat malignant processes. Transformed cells harbor diverse modifications that lead to formation of neoantigens, including aberrantly expressed cell surface carbohydrates. Targeting tumor-associated carbohydrate antigens (TACA) hold great potential for cancer immunotherapy. N-glycolylneuraminic acid (Neu5Gc) is a dietary non-human immunogenic carbohydrate that accumulates on human cancer cells, thereby generating neoantigens. In mice, passive immunotherapy with anti-Neu5Gc antibodies inhibits growth of Neu5Gc-positive tumors. Here, we designed an active cancer vaccine immunotherapy strategy to target Neu5Gc-positive tumors. We generated biomimetic glyconanoparticles using engineered αGal knockout porcine red blood cells to form nanoghosts (NGs) that either express (NGpos) or lack expression (NGneg) of Neu5Gc-glycoconjugates in their natural context. We demonstrated that optimized immunization of "human-like" Neu5Gc-deficient Cmah-/- mice with NGpos glyconanoparticles induce a strong, diverse and persistent anti-Neu5Gc IgG immune response. The resulting anti-Neu5Gc IgG antibodies were also detected within Neu5Gc-positive tumors and inhibited tumor growth in vivo. Using detailed glycan microarray analysis, we further demonstrate that the kinetics and quality of the immune responses influence the efficacy of the vaccine. These findings reinforce the potential of TACA neoantigens and the dietary non-human sialic acid Neu5Gc, in particular, as immunotherapy targets.


Asunto(s)
Adenocarcinoma/terapia , Materiales Biomiméticos/uso terapéutico , Vacunas contra el Cáncer/uso terapéutico , Neoplasias del Colon/terapia , Inmunoterapia , Nanopartículas/uso terapéutico , Ácidos Neuramínicos/uso terapéutico , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Animales , Materiales Biomiméticos/química , Vacunas contra el Cáncer/química , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Ratones , Ratones Noqueados , Ácido N-Acetilneuramínico/análisis , Nanopartículas/química , Ácidos Neuramínicos/química , Tamaño de la Partícula , Porcinos
17.
Sci Rep ; 8(1): 6603, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700341

RESUMEN

Understanding blood group antigen binding preferences for C-type lectin receptors holds promise for modulating immune responses, since several Gram-negative bacteria express blood group antigens as molecular mimicry to evade immune responses. Herein, we report the synthesis of ABO blood group antigen active tri and disaccharides to investigate the binding specificity with various C-type lectin receptors using glycan microarray. The results of binding preferences show that distinct glycosylation on the galactose and fucose motifs are key for C-type lectin receptor binding and that these interactions occur in a Ca2+-dependent fashion.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/inmunología , Sistema del Grupo Sanguíneo ABO/metabolismo , Lectinas Tipo C/metabolismo , Polisacáridos/inmunología , Animales , Disacáridos/química , Disacáridos/inmunología , Glicosilación , Humanos , Ratones , Estructura Molecular , Polisacáridos/química , Análisis por Matrices de Proteínas , Unión Proteica/inmunología
18.
Nat Nanotechnol ; 13(3): 214-219, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29379205

RESUMEN

Previous studies have identified relevant genes and signalling pathways that are hampered in human disorders as potential candidates for therapeutics. Developing nucleic acid-based tools to manipulate gene expression, such as short interfering RNAs1-3 (siRNAs), opens up opportunities for personalized medicine. Yet, although major progress has been made in developing siRNA targeted delivery carriers, mainly by utilizing monoclonal antibodies (mAbs) for targeting4-8, their clinical translation has not occurred. This is in part because of the massive development and production requirements and the high batch-to-batch variability of current technologies, which rely on chemical conjugation. Here we present a self-assembled modular platform that enables the construction of a theoretically unlimited repertoire of siRNA targeted carriers. The self-assembly of the platform is based on a membrane-anchored lipoprotein that is incorporated into siRNA-loaded lipid nanoparticles that interact with the antibody crystallizable fragment (Fc) domain. We show that a simple switch of eight different mAbs redirects the specific uptake of siRNAs by diverse leukocyte subsets in vivo. The therapeutic potential of the platform is demonstrated in an inflammatory bowel disease model by targeting colon macrophages to reduce inflammatory symptoms, and in a Mantle Cell Lymphoma xenograft model by targeting cancer cells to induce cell death and improve survival. This modular delivery platform represents a milestone in the development of precision medicine.


Asunto(s)
Colitis/terapia , Sistemas de Liberación de Medicamentos/métodos , Liposomas/química , ARN Interferente Pequeño/administración & dosificación , Tratamiento con ARN de Interferencia/métodos , Animales , Anticuerpos Monoclonales/química , Colitis/genética , Femenino , Lipoproteínas/química , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacocinética , ARN Interferente Pequeño/uso terapéutico
19.
Sci Rep ; 8(1): 10786, 2018 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-30018351

RESUMEN

Anti-carbohydrate monoclonal antibodies (mAbs) hold great promise as cancer therapeutics and diagnostics. However, their specificity can be mixed, and detailed characterization is problematic, because antibody-glycan complexes are challenging to crystallize. Here, we developed a generalizable approach employing high-throughput techniques for characterizing the structure and specificity of such mAbs, and applied it to the mAb TKH2 developed against the tumor-associated carbohydrate antigen sialyl-Tn (STn). The mAb specificity was defined by apparent KD values determined by quantitative glycan microarray screening. Key residues in the antibody combining site were identified by site-directed mutagenesis, and the glycan-antigen contact surface was defined using saturation transfer difference NMR (STD-NMR). These features were then employed as metrics for selecting the optimal 3D-model of the antibody-glycan complex, out of thousands plausible options generated by automated docking and molecular dynamics simulation. STn-specificity was further validated by computationally screening of the selected antibody 3D-model against the human sialyl-Tn-glycome. This computational-experimental approach would allow rational design of potent antibodies targeting carbohydrates.


Asunto(s)
Anticuerpos Monoclonales/química , Antígenos de Carbohidratos Asociados a Tumores/inmunología , Modelos Moleculares , Animales , Especificidad de Anticuerpos , Antígenos de Carbohidratos Asociados a Tumores/química , Células Cultivadas , Simulación por Computador , Células HEK293 , Humanos , Ratones , Simulación de Dinámica Molecular
20.
J Vis Exp ; (125)2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28745644

RESUMEN

Cells are covered with a cloak of carbohydrate chains (glycans) that is commonly altered in cancer and that includes variations in sialic acid (Sia) expression. These are acidic sugars that have a 9-carbon backbone and that cap vertebrate glycans on cell surfaces. Two of the major Sia forms in mammals are N-acetylneuraminic acid (Neu5Ac) and its hydroxylated form, N-glycolylneuraminic acid (Neu5Gc). Humans cannot produce endogenous Neu5Gc due to the inactivation of the gene encoding cytidine 5'monophosphate-Neu5Ac (CMP-Neu5Ac) hydroxylase (CMAH). Foreign Neu5Gc is acquired by human cells through the dietary consumption of red meat and dairy and subsequently appears on diverse glycans on the cell surface, accumulating mostly on carcinomas. Consequently, humans have circulating anti-Neu5Gc antibodies that play diverse roles in cancer and other chronic inflammation-mediated diseases and that are becoming potential diagnostic and therapeutic targets. Here, we describe a high-throughput sialoglycan microarray assay to assess such anti-Neu5Gc antibodies in the human sera. Neu5Gc-containing glycans and their matched pairs of controls (Neu5Ac-containing glycans), each with a core primary amine, are covalently linked to epoxy-coated glass slides. We exemplify the printing of 56 slides in a 16-well format using a specific nano-printer capable of generating up to 896 arrays per print. Each slide can be used to screen 16 different human sera samples for the evaluation of anti-Neu5Gc antibody specificity, intensity, and diversity. The protocol describes the complexity of this robust tool and provides a basic guideline for those aiming to investigate the response to Neu5Gc dietary carbohydrate antigen in diverse clinical samples in an array format.


Asunto(s)
Inmunoglobulina G/sangre , Ácidos Neuramínicos/inmunología , Análisis por Matrices de Proteínas , Animales , Especificidad de Anticuerpos , Secuencia de Carbohidratos , Ensayos Analíticos de Alto Rendimiento , Humanos , Inmunoensayo , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA