Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Opt Lett ; 38(9): 1373-5, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23632488

RESUMEN

We demonstrate an optically controlled Kerr phase shifter using a room-temperature 85Rb vapor operating in a Raman gain scheme. Phase shifts from zero to π relative to an unshifted reference wave are observed, and gated operations are demonstrated. We further demonstrate the versatile digital manipulation of encoded signal light with an encoded phase-control light field using an unbalanced Mach-Zehnder interferometer. Generalizations of this scheme should be capable of full manipulation of a digitized signal field at high speed, opening the door to future applications.

2.
Opt Express ; 18(4): 3708-18, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20389381

RESUMEN

We analyze the generation of single spatial mode, spectrally uncorrelated photon pairs via type II spontaneous parametric down-conversion in a Potassium Titanyl Phosphate (KTP) waveguide using real experimental parameters. We show that this source can be used as an efficient, heralded, pure-state single-photon source.


Asunto(s)
Iluminación/instrumentación , Modelos Químicos , Fosfatos/química , Refractometría/instrumentación , Titanio/química , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Fotones
3.
Science ; 269(5220): 17, 1995 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-17787683
4.
J Res Natl Inst Stand Technol ; 105(6): 867-74, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-27551641

RESUMEN

For two-dimensional x-ray imaging of thin films, the technique of scanning transmission x-ray microscopy (STXM) has achieved images with feature sizes as small as 40 nm in recent years. However, calibration of three-dimensional tomographic images that are produced with STXM data at this scale has not yet been described in the scientific literature, and the calibration procedure has novel problems that have not been encountered by x-ray tomography carried out at a larger scale. In x-ray microtomography, for example, one always has the option of using optical imaging on a section of the object to verify the x-ray projection measurements; with STXM, on the other hand, the sample features are too small to be resolved by light at optical wavelengths. This fact implies that one must rely on procedures with higher resolution, such as atomic force microscopy (AFM), for the calibration. Such procedures, however, generally depend on a highly destructive sectioning of the sample, and are difficult to interpret because they give surface information rather than depth information. In this article, a procedure for calibration is described that overcomes these limitations and achieves a calibration of an STXM tomography image with an AFM image and a scanning electron microscopy image of the same object. A Ge star-shaped pattern was imaged at a synchrotron with a scanning transmission x-ray microscope. Nineteen high-resolution projection images of 200 × 200 pixels were tomographically reconstructed into a three-dimensional image. Features in two-dimensional images as small as 40 nm and features as small as 80 nm in the three-dimensional reconstruction were resolved. Transverse length scales based on atomic force microscopy, scanning electron microscopy, x-ray transmission and tomographic reconstruction agreed to within 10 nm. Toward the center of the sample, the pattern thickness calculated from projection images was (51 ± 15) nm vs (80 ± 52) nm for tomographic reconstruction, where the uncertainties are evaluated at the level of two standard deviations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA