Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 163(7): 1585-95, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26687352

RESUMEN

Trimethylamine (TMA) N-oxide (TMAO), a gut-microbiota-dependent metabolite, both enhances atherosclerosis in animal models and is associated with cardiovascular risks in clinical studies. Here, we investigate the impact of targeted inhibition of the first step in TMAO generation, commensal microbial TMA production, on diet-induced atherosclerosis. A structural analog of choline, 3,3-dimethyl-1-butanol (DMB), is shown to non-lethally inhibit TMA formation from cultured microbes, to inhibit distinct microbial TMA lyases, and to both inhibit TMA production from physiologic polymicrobial cultures (e.g., intestinal contents, human feces) and reduce TMAO levels in mice fed a high-choline or L-carnitine diet. DMB inhibited choline diet-enhanced endogenous macrophage foam cell formation and atherosclerotic lesion development in apolipoprotein e(-/-) mice without alterations in circulating cholesterol levels. The present studies suggest that targeting gut microbial production of TMA specifically and non-lethal microbial inhibitors in general may serve as a potential therapeutic approach for the treatment of cardiometabolic diseases.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Colina/análogos & derivados , Tracto Gastrointestinal/microbiología , Hexanoles/administración & dosificación , Liasas/antagonistas & inhibidores , Metilaminas/metabolismo , Animales , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Colesterol/metabolismo , Colina/metabolismo , Dieta , Heces/química , Células Espumosas/metabolismo , Humanos , Liasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microbiota
2.
J Biol Chem ; 295(15): 4836-4848, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32098873

RESUMEN

Apolipoprotein A-I (apoA-I) is the major protein constituent of high-density lipoprotein (HDL) and a target of myeloperoxidase-dependent oxidation in the artery wall. In atherosclerotic lesions, apoA-I exhibits marked oxidative modifications at multiple sites, including Trp72 Site-specific mutagenesis studies have suggested, but have not conclusively shown, that oxidative modification of Trp72 of apoA-I impairs many atheroprotective properties of this lipoprotein. Herein, we used genetic code expansion technology with an engineered Saccharomyces cerevisiae tryptophanyl tRNA-synthetase (Trp-RS):suppressor tRNA pair to insert the noncanonical amino acid 5-hydroxytryptophan (5-OHTrp) at position 72 in recombinant human apoA-I and confirmed site-specific incorporation utilizing MS. In functional characterization studies, 5-OHTrp72 apoA-I (compared with WT apoA-I) exhibited reduced ABC subfamily A member 1 (ABCA1)-dependent cholesterol acceptor activity in vitro (41.73 ± 6.57% inhibition; p < 0.01). Additionally, 5-OHTrp72 apoA-I displayed increased activation and stabilization of paraoxonase 1 (PON1) activity (µmol/min/mg) when compared with WT apoA-I and comparable PON1 activation/stabilization compared with reconstituted HDL (WT apoA-I, 1.92 ± 0.04; 5-OHTrp72 apoA-I, 2.35 ± 0.0; and HDL, 2.33 ± 0.1; p < 0.001, p < 0.001, and p < 0.001, respectively). Following injection into apoA-I-deficient mice, 5-OHTrp72 apoA-I reached plasma levels comparable with those of native apoA-I yet exhibited significantly reduced (48%; p < 0.01) lipidation and evidence of HDL biogenesis. Collectively, these findings unequivocally reveal that site-specific oxidative modification of apoA-I via 5-OHTrp at Trp72 impairs cholesterol efflux and the rate-limiting step of HDL biogenesis both in vitro and in vivo.


Asunto(s)
5-Hidroxitriptófano/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Apolipoproteína A-I/metabolismo , Arildialquilfosfatasa/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL/biosíntesis , Tirosina/metabolismo , 5-Hidroxitriptófano/genética , Transportador 1 de Casete de Unión a ATP/genética , Animales , Apolipoproteína A-I/genética , Arildialquilfosfatasa/genética , Transporte Biológico , Humanos , Ratones , Ratones Noqueados , Oxidación-Reducción , Unión Proteica
3.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34948275

RESUMEN

L-alpha glycerylphosphorylcholine (GPC), a nutritional supplement, has been demonstrated to improve neurological function. However, a new study suggests that GPC supplementation increases incident stroke risk thus its potential adverse effects warrant further investigation. Here we show that GPC promotes atherosclerosis in hyperlipidemic Apoe-/- mice. GPC can be metabolized to trimethylamine N-oxide, a pro-atherogenic agent, suggesting a potential molecular mechanism underlying the observed atherosclerosis progression. GPC supplementation shifted the gut microbial community structure, characterized by increased abundance of Parabacteroides, Ruminococcus, and Bacteroides and decreased abundance of Akkermansia, Lactobacillus, and Roseburia, as determined by 16S rRNA gene sequencing. These data are consistent with a reduction in fecal and cecal short chain fatty acids in GPC-fed mice. Additionally, we found that GPC supplementation led to an increased relative abundance of choline trimethylamine lyase (cutC)-encoding bacteria via qPCR. Interrogation of host inflammatory signaling showed that GPC supplementation increased expression of the proinflammatory effectors CXCL13 and TIMP-1 and activated NF-κB and MAPK signaling pathways in human coronary artery endothelial cells. Finally, targeted and untargeted metabolomic analysis of murine plasma revealed additional metabolites associated with GPC supplementation and atherosclerosis. In summary, our results show GPC promotes atherosclerosis through multiple mechanisms and that caution should be applied when using GPC as a nutritional supplement.


Asunto(s)
Aterosclerosis/etiología , Glicerilfosforilcolina/efectos adversos , Glicerilfosforilcolina/metabolismo , Animales , Apolipoproteínas E/genética , Aterosclerosis/inducido químicamente , Aterosclerosis/metabolismo , Ciego/metabolismo , Ciego/microbiología , Línea Celular , Suplementos Dietéticos/efectos adversos , Células Endoteliales/metabolismo , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Glicerilfosforilcolina/farmacología , Humanos , Masculino , Metilaminas/efectos adversos , Metilaminas/metabolismo , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
4.
Eur Heart J ; 40(7): 583-594, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30535398

RESUMEN

AIMS: Carnitine and choline are major nutrient precursors for gut microbiota-dependent generation of the atherogenic metabolite, trimethylamine N-oxide (TMAO). We performed randomized-controlled dietary intervention studies to explore the impact of chronic dietary patterns on TMAO levels, metabolism and renal excretion. METHODS AND RESULTS: Volunteers (N = 113) were enrolled in a randomized 2-arm (high- or low-saturated fat) crossover design study. Within each arm, three 4-week isocaloric diets (with washout period between each) were evaluated (all meals prepared in metabolic kitchen with 25% calories from protein) to examine the effects of red meat, white meat, or non-meat protein on TMAO metabolism. Trimethylamine N-oxide and other trimethylamine (TMA) related metabolites were quantified at the end of each diet period. A random subset (N = 13) of subjects also participated in heavy isotope tracer studies. Chronic red meat, but not white meat or non-meat ingestion, increased plasma and urine TMAO (each >two-fold; P < 0.0001). Red meat ingestion also significantly reduced fractional renal excretion of TMAO (P < 0.05), but conversely, increased fractional renal excretion of carnitine, and two alternative gut microbiota-generated metabolites of carnitine, γ-butyrobetaine, and crotonobetaine (P < 0.05). Oral isotope challenge revealed red meat or white meat (vs. non-meat) increased TMA and TMAO production from carnitine (P < 0.05 each) but not choline. Dietary-saturated fat failed to impact TMAO or its metabolites. CONCLUSION: Chronic dietary red meat increases systemic TMAO levels through: (i) enhanced dietary precursors; (ii) increased microbial TMA/TMAO production from carnitine, but not choline; and (iii) reduced renal TMAO excretion. Discontinuation of dietary red meat reduces plasma TMAO within 4 weeks.


Asunto(s)
Dieta , Proteínas en la Dieta , Metilaminas/metabolismo , Aves de Corral , Carne Roja , Eliminación Renal/fisiología , Adulto , Anciano , Animales , Estudios Cruzados , Conducta Alimentaria , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valores de Referencia , Adulto Joven
5.
Eur Heart J ; 40(32): 2700-2709, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31049589

RESUMEN

AIMS: Trimethyllysine (TML) serves as a nutrient precursor of the gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) and is associated with incident cardiovascular (CV) events in stable subjects. We examined the relationship between plasma TML levels and incident CV events in patients presenting with acute coronary syndromes (ACS). METHODS AND RESULTS: Plasma levels of TML were quantified in two independent cohorts using mass spectrometry, and its relationship with CV events was investigated. In a Cleveland Cohort (N = 530), comprised of patients presenting to the emergency department with chest pain and suspected ACS, TML was associated with major adverse cardiac events (MACE, myocardial infarction, stroke, need for revascularization, or all-cause mortality) over both 30 days [3rd tertile (T3), adjusted odds ratio (OR) 1.77, 95% confidence interval (CI) 1.04-3.01; P < 0.05] and 6 months (T3, adjusted OR 1.95, 95% CI 1.15-3.32; P < 0.05) of follow-up independent of traditional CV risk factors and indices of renal function. Elevated TML levels were also associated with incident long-term (7-year) all-cause mortality [T3, adjusted hazard ratio (HR) 2.52, 95% CI 1.50-4.24; P < 0.001], and MACE even amongst patients persistently negative for cardiac Troponin T at presentation (e.g. 30-day MACE, T3, adjusted OR 4.49, 95% CI 2.06-9.79; P < 0.001). Trimethyllysine in combination with TMAO showed additive significance for near- and long-term CV events, including patients with 'negative' high-sensitivity Troponin T levels. In a multicentre Swiss Cohort (N = 1683) comprised of ACS patients, similar associations between TML and incident 1-year adverse cardiac risks were observed (e.g. mortality, adjusted T3 HR 2.74, 95% CI 1.28-5.85; P < 0.05; and MACE, adjusted T3 HR 1.55, 95% CI 1.04-2.31; P < 0.05). CONCLUSION: Plasma TML levels, alone and together with TMAO, are associated with both near- and long-term CV events in patients with chest pain and ACS.


Asunto(s)
Síndrome Coronario Agudo , Lisina/análogos & derivados , Síndrome Coronario Agudo/sangre , Síndrome Coronario Agudo/diagnóstico , Síndrome Coronario Agudo/epidemiología , Síndrome Coronario Agudo/mortalidad , Anciano , Femenino , Humanos , Lisina/sangre , Masculino , Metilaminas/sangre , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos
6.
J Biol Chem ; 291(4): 1890-1904, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26567339

RESUMEN

Paraoxonase 1 (PON1) is a high density lipoprotein (HDL)-associated protein with atherosclerosis-protective and systemic anti-oxidant functions. We recently showed that PON1, myeloperoxidase, and HDL bind to one another in vivo forming a functional ternary complex (Huang, Y., Wu, Z., Riwanto, M., Gao, S., Levison, B. S., Gu, X., Fu, X., Wagner, M. A., Besler, C., Gerstenecker, G., Zhang, R., Li, X. M., Didonato, A. J., Gogonea, V., Tang, W. H., et al. (2013) J. Clin. Invest. 123, 3815-3828). However, specific residues on PON1 involved in the HDL-PON1 interaction remain unclear. Unambiguous identification of protein residues involved in docking interactions to lipid surfaces poses considerable methodological challenges. Here we describe a new strategy that uses a novel synthetic photoactivatable and click chemistry-taggable phospholipid probe, which, when incorporated into HDL, was used to identify amino acid residues on PON1 that directly interact with the lipoprotein phospholipid surface. Several specific PON1 residues (Leu-9, Tyr-185, and Tyr-293) were identified through covalent cross-links with the lipid probes using affinity isolation coupled to liquid chromatography with on-line tandem mass spectrometry. Based upon the crystal structure for PON1, the identified residues are all localized in relatively close proximity on the surface of PON1, defining a domain that binds to the HDL lipid surface. Site-specific mutagenesis of the identified PON1 residues (Leu-9, Tyr-185, and Tyr-293), coupled with functional studies, reveals their importance in PON1 binding to HDL and both PON1 catalytic activity and stability. Specifically, the residues identified on PON1 provide important structural insights into the PON1-HDL interaction. More generally, the new photoactivatable and affinity-tagged lipid probe developed herein should prove to be a valuable tool for identifying contact sites supporting protein interactions with lipid interfaces such as found on cell membranes or lipoproteins.


Asunto(s)
Arildialquilfosfatasa/química , Arildialquilfosfatasa/metabolismo , Lipoproteínas HDL/metabolismo , Secuencias de Aminoácidos , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Arildialquilfosfatasa/genética , Catálisis , Cristalografía por Rayos X , Humanos , Mutagénesis Sitio-Dirigida , Unión Proteica
7.
Circ Res ; 116(3): 448-55, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25599331

RESUMEN

RATIONALE: Trimethylamine-N-oxide (TMAO), a gut microbial-dependent metabolite of dietary choline, phosphatidylcholine (lecithin), and l-carnitine, is elevated in chronic kidney diseases (CKD) and associated with coronary artery disease pathogenesis. OBJECTIVE: To both investigate the clinical prognostic value of TMAO in subjects with versus without CKD, and test the hypothesis that TMAO plays a direct contributory role in the development and progression of renal dysfunction. METHODS AND RESULTS: We first examined the relationship between fasting plasma TMAO and all-cause mortality over 5-year follow-up in 521 stable subjects with CKD (estimated glomerular filtration rate, <60 mL/min per 1.73 m(2)). Median TMAO level among CKD subjects was 7.9 µmol/L (interquartile range, 5.2-12.4 µmol/L), which was markedly higher (P<0.001) than in non-CKD subjects (n=3166). Within CKD subjects, higher (fourth versus first quartile) plasma TMAO level was associated with a 2.8-fold increased mortality risk. After adjustments for traditional risk factors, high-sensitivity C-reactive protein, estimated glomerular filtration rate, elevated TMAO levels remained predictive of 5-year mortality risk (hazard ratio, 1.93; 95% confidence interval, 1.13-3.29; P<0.05). TMAO provided significant incremental prognostic value (net reclassification index, 17.26%; P<0.001 and differences in area under receiver operator characteristic curve, 63.26% versus 65.95%; P=0.036). Among non-CKD subjects, elevated TMAO levels portend poorer prognosis within cohorts of high and low cystatin C. In animal models, elevated dietary choline or TMAO directly led to progressive renal tubulointerstitial fibrosis and dysfunction. CONCLUSIONS: Plasma TMAO levels are both elevated in patients with CKD and portend poorer long-term survival. Chronic dietary exposures that increase TMAO directly contributes to progressive renal fibrosis and dysfunction in animal models.


Asunto(s)
Metilaminas/toxicidad , Microbiota , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal/diagnóstico , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores/sangre , Estudios de Casos y Controles , Femenino , Humanos , Intestinos/microbiología , Masculino , Metilaminas/sangre , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Pronóstico , Insuficiencia Renal/etiología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/microbiología , Factores de Riesgo
8.
Nature ; 472(7341): 57-63, 2011 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-21475195

RESUMEN

Metabolomics studies hold promise for the discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. Here we used a metabolomics approach to generate unbiased small-molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine--choline, trimethylamine N-oxide (TMAO) and betaine--were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted upregulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary-choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases, an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidaemic mice. Discovery of a relationship between gut-flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for the development of new diagnostic tests and therapeutic approaches for atherosclerotic heart disease.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/microbiología , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Fosfatidilcolinas/metabolismo , Animales , Aterosclerosis/inducido químicamente , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/microbiología , Betaína/sangre , Betaína/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/diagnóstico , HDL-Colesterol/sangre , Colina/administración & dosificación , Colina/sangre , Colina/metabolismo , Colina/farmacología , Dieta/efectos adversos , Grasas de la Dieta/sangre , Grasas de la Dieta/metabolismo , Grasas de la Dieta/farmacología , Femenino , Regulación de la Expresión Génica , Vida Libre de Gérmenes , Humanos , Hígado/enzimología , Macrófagos/metabolismo , Metabolómica , Metilaminas/sangre , Metilaminas/metabolismo , Metilaminas/farmacología , Ratones , Ratones Endogámicos C57BL , Oxigenasas/genética , Oxigenasas/metabolismo , Fenotipo , Fosfatidilcolinas/administración & dosificación , Fosfatidilcolinas/sangre , Fosfatidilcolinas/farmacología , Receptores Depuradores/metabolismo , Medición de Riesgo
9.
J Biol Chem ; 290(9): 5647-60, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25550161

RESUMEN

Recent studies indicate both clinical and mechanistic links between atherosclerotic heart disease and intestinal microbial metabolism of certain dietary nutrients producing trimethylamine N-oxide (TMAO). Here we test the hypothesis that gut microbial transplantation can transmit choline diet-induced TMAO production and atherosclerosis susceptibility. First, a strong association was noted between atherosclerotic plaque and plasma TMAO levels in a mouse diversity panel (n = 22 strains, r = 0.38; p = 0.0001). An atherosclerosis-prone and high TMAO-producing strain, C57BL/6J, and an atherosclerosis-resistant and low TMAO-producing strain, NZW/LacJ, were selected as donors for cecal microbial transplantation into apolipoprotein e null mice in which resident intestinal microbes were first suppressed with antibiotics. Trimethylamine (TMA) and TMAO levels were initially higher in recipients on choline diet that received cecal microbes from C57BL/6J inbred mice; however, durability of choline diet-dependent differences in TMA/TMAO levels was not maintained to the end of the study. Mice receiving C57BL/6J cecal microbes demonstrated choline diet-dependent enhancement in atherosclerotic plaque burden as compared with recipients of NZW/LacJ microbes. Microbial DNA analyses in feces and cecum revealed transplantation of donor microbial community features into recipients with differences in taxa proportions between donor strains that were transmissible to recipients and that tended to show coincident proportions with TMAO levels. Proportions of specific taxa were also identified that correlated with plasma TMAO levels in donors and recipients and with atherosclerotic lesion area in recipients. Atherosclerosis susceptibility may be transmitted via transplantation of gut microbiota. Gut microbes may thus represent a novel therapeutic target for modulating atherosclerosis susceptibility.


Asunto(s)
Aterosclerosis/microbiología , Ciego/microbiología , Susceptibilidad a Enfermedades/microbiología , Tracto Gastrointestinal/microbiología , Microbiota/fisiología , Animales , Aorta/metabolismo , Aorta/patología , Aterosclerosis/sangre , Aterosclerosis/etiología , Colina/administración & dosificación , Dieta/efectos adversos , Susceptibilidad a Enfermedades/sangre , Susceptibilidad a Enfermedades/complicaciones , Femenino , Interacciones Huésped-Patógeno , Humanos , Masculino , Metilaminas/sangre , Metilaminas/metabolismo , Ratones Endogámicos AKR , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Endogámicos DBA , Ratones Endogámicos , Ratones Noqueados , Ratones Transgénicos , Especificidad de la Especie
10.
N Engl J Med ; 368(17): 1575-84, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23614584

RESUMEN

BACKGROUND: Recent studies in animals have shown a mechanistic link between intestinal microbial metabolism of the choline moiety in dietary phosphatidylcholine (lecithin) and coronary artery disease through the production of a proatherosclerotic metabolite, trimethylamine-N-oxide (TMAO). We investigated the relationship among intestinal microbiota-dependent metabolism of dietary phosphatidylcholine, TMAO levels, and adverse cardiovascular events in humans. METHODS: We quantified plasma and urinary levels of TMAO and plasma choline and betaine levels by means of liquid chromatography and online tandem mass spectrometry after a phosphatidylcholine challenge (ingestion of two hard-boiled eggs and deuterium [d9]-labeled phosphatidylcholine) in healthy participants before and after the suppression of intestinal microbiota with oral broad-spectrum antibiotics. We further examined the relationship between fasting plasma levels of TMAO and incident major adverse cardiovascular events (death, myocardial infarction, or stroke) during 3 years of follow-up in 4007 patients undergoing elective coronary angiography. RESULTS: Time-dependent increases in levels of both TMAO and its d9 isotopologue, as well as other choline metabolites, were detected after the phosphatidylcholine challenge. Plasma levels of TMAO were markedly suppressed after the administration of antibiotics and then reappeared after withdrawal of antibiotics. Increased plasma levels of TMAO were associated with an increased risk of a major adverse cardiovascular event (hazard ratio for highest vs. lowest TMAO quartile, 2.54; 95% confidence interval, 1.96 to 3.28; P<0.001). An elevated TMAO level predicted an increased risk of major adverse cardiovascular events after adjustment for traditional risk factors (P<0.001), as well as in lower-risk subgroups. CONCLUSIONS: The production of TMAO from dietary phosphatidylcholine is dependent on metabolism by the intestinal microbiota. Increased TMAO levels are associated with an increased risk of incident major adverse cardiovascular events. (Funded by the National Institutes of Health and others.).


Asunto(s)
Antibacterianos/farmacología , Enfermedades Cardiovasculares/sangre , Intestinos/microbiología , Metagenoma/fisiología , Metilaminas/sangre , Fosfatidilcolinas/metabolismo , Administración Oral , Anciano , Antibacterianos/uso terapéutico , Betaína/sangre , Colina/administración & dosificación , Colina/sangre , Femenino , Humanos , Mucosa Intestinal/metabolismo , Estimación de Kaplan-Meier , Masculino , Metagenoma/efectos de los fármacos , Metilaminas/orina , Persona de Mediana Edad , Fosfatidilcolinas/administración & dosificación , Estudios Prospectivos , Factores de Riesgo
11.
Stem Cells ; 32(7): 1746-58, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24737733

RESUMEN

Glioblastoma (GBM) contains a self-renewing, tumorigenic cancer stem cell (CSC) population which contributes to tumor propagation and therapeutic resistance. While the tumor microenvironment is essential to CSC self-renewal, the mechanisms by which CSCs sense and respond to microenvironmental conditions are poorly understood. Scavenger receptors are a broad class of membrane receptors well characterized on immune cells and instrumental in sensing apoptotic cellular debris and modified lipids. Here, we provide evidence that CSCs selectively use the scavenger receptor CD36 to promote their maintenance using patient-derived CSCs and in vivo xenograft models. CD36 expression was observed in GBM cells in addition to previously described cell types including endothelial cells, macrophages, and microglia. CD36 was enriched in CSCs and was able to functionally distinguish self-renewing cells. CD36 was coexpressed with integrin alpha 6 and CD133, previously described CSC markers, and CD36 reduction resulted in concomitant loss of integrin alpha 6 expression, self-renewal, and tumor initiation capacity. We confirmed oxidized phospholipids, ligands of CD36, were present in GBM and found that the proliferation of CSCs, but not non-CSCs, increased with exposure to oxidized low-density lipoprotein. CD36 was an informative biomarker of malignancy and negatively correlated to patient prognosis. These results provide a paradigm for CSCs to thrive by the selective enhanced expression of scavenger receptors, providing survival, and metabolic advantages.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Antígenos CD36/metabolismo , Glioblastoma/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Antígenos CD36/genética , Proliferación Celular , Progresión de la Enfermedad , Femenino , Expresión Génica , Glioblastoma/mortalidad , Glioblastoma/patología , Estimación de Kaplan-Meier , Lipoproteínas LDL/fisiología , Ratones Desnudos , Trasplante de Neoplasias , Células Tumorales Cultivadas
12.
Eur Heart J ; 35(14): 904-10, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24497336

RESUMEN

AIMS: Recent metabolomics and animal model studies show trimethylamine-N-oxide (TMAO), an intestinal microbiota-dependent metabolite formed from dietary trimethylamine-containing nutrients such as phosphatidylcholine (PC), choline, and carnitine, is linked to coronary artery disease pathogenesis. Our aim was to examine the prognostic value of systemic choline and betaine levels in stable cardiac patients. METHODS AND RESULTS: We examined the relationship between fasting plasma choline and betaine levels and risk of major adverse cardiac events (MACE = death, myocardial infraction, stroke) in relation to TMAO over 3 years of follow-up in 3903 sequential stable subjects undergoing elective diagnostic coronary angiography. In our study cohort, median (IQR) TMAO, choline, and betaine levels were 3.7 (2.4-6.2)µM, 9.8 (7.9-12.2)µM, and 41.1 (32.5-52.1)µM, respectively. Modest but statistically significant correlations were noted between TMAO and choline (r = 0.33, P < 0.001) and less between TMAO and betaine (r = 0.09, P < 0.001). Higher plasma choline and betaine levels were associated with a 1.9-fold and 1.4-fold increased risk of MACE, respectively (Quartiles 4 vs. 1; P < 0.01, each). Following adjustments for traditional cardiovascular risk factors and high-sensitivity C-reactive protein, elevated choline [1.34 (1.03-1.74), P < 0.05], and betaine levels [1.33 (1.03-1.73), P < 0.05] each predicted increased MACE risk. Neither choline nor betaine predicted MACE risk when TMAO was added to the adjustment model, and choline and betaine predicted future risk for MACE only when TMAO was elevated. CONCLUSION: Elevated plasma levels of choline and betaine are each associated with incident MACE risk independent of traditional risk factors. However, high choline and betaine levels are only associated with higher risk of future MACE with concomitant increase in TMAO.


Asunto(s)
Betaína/metabolismo , Enfermedades Cardiovasculares/mortalidad , Colina/metabolismo , Mucosa Intestinal/metabolismo , Metilaminas/metabolismo , Microbiota/fisiología , Animales , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Medición de Riesgo/métodos , Factores de Riesgo
13.
Anal Biochem ; 455: 35-40, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24704102

RESUMEN

Trimethylamine-N-oxide (TMAO) levels in blood predict future risk for major adverse cardiac events including myocardial infarction, stroke, and death. Thus, the rapid determination of circulating TMAO concentration is of clinical interest. Here we report a method to measure TMAO in biological matrices by stable isotope dilution liquid chromatography tandem mass spectrometry (LC/MS/MS) with lower and upper limits of quantification of 0.05 and >200µM, respectively. Spike and recovery studies demonstrate an accuracy at low (0.5µM), mid (5µM), and high (100µM) levels of 98.2, 97.3, and 101.6%, respectively. Additional assay performance metrics include intraday and interday coefficients of variance of <6.4 and <9.9%, respectively, across the range of TMAO levels. Stability studies reveal that TMAO in plasma is stable both during storage at -80°C for 5years and to multiple freeze thaw cycles. Fasting plasma normal range studies among apparently healthy subjects (n=349) show a range of 0.73-126µM, median (interquartile range) levels of 3.45 (2.25-5.79)µM, and increasing values with age. The LC/MS/MS-based assay reported should be of value for further studies evaluating TMAO as a risk marker and for examining the effect of dietary, pharmacologic, and environmental factors on TMAO levels.


Asunto(s)
Cromatografía Liquida/métodos , Metilaminas/sangre , Espectrometría de Masas en Tándem/métodos , Adulto , Anciano , Deuterio , Ayuno , Femenino , Humanos , Técnicas de Dilución del Indicador , Límite de Detección , Masculino , Persona de Mediana Edad , Valores de Referencia , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray/métodos
14.
J Am Heart Assoc ; 10(21): e021934, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34713713

RESUMEN

Background Trimethylamine-N-oxide (TMAO) is a small molecule derived from the metabolism of dietary nutrients by gut microbes and contributes to cardiovascular disease. Plasma TMAO increases following consumption of red meat. This metabolic change is thought to be partly because of the expansion of gut microbes able to use nutrients abundant in red meat. Methods and Results We used data from a randomized crossover study to estimate the degree to which TMAO can be estimated from fecal microbial composition. Healthy participants received a series of 3 diets that differed in protein source (red meat, white meat, and non-meat), and fecal, plasma, and urine samples were collected following 4 weeks of exposure to each diet. TMAO was quantitated in plasma and urine, while shotgun metagenomic sequencing was performed on fecal DNA. While the cai gene cluster was weakly correlated with plasma TMAO (rho=0.17, P=0.0007), elastic net models of TMAO were not improved by abundances of bacterial genes known to contribute to TMAO synthesis. A global analysis of all taxonomic groups, genes, and gene families found no meaningful predictors of TMAO. We postulated that abundances of known genes related to TMAO production do not predict bacterial metabolism, and we measured choline- and carnitine-trimethylamine lyase activity during fecal culture. Trimethylamine lyase genes were only weakly correlated with the activity of the enzymes they encode. Conclusions Fecal microbiome composition does not predict systemic TMAO because, in this case, gene copy number does not predict bacterial metabolic activity. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT01427855.


Asunto(s)
Microbiota , Adulto , Bacterias/metabolismo , Colina/metabolismo , Estudios Cruzados , Dieta , Heces , Microbioma Gastrointestinal , Humanos , Liasas/metabolismo , Metilaminas/sangre
15.
Am J Respir Crit Care Med ; 178(7): 673-81, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18635886

RESUMEN

RATIONALE: As the sole nitrogen donor in nitric oxide (NO) synthesis and key intermediate in the urea cycle, arginine and its metabolic pathways are integrally linked to cellular respiration, metabolism, and inflammation. OBJECTIVES: We hypothesized that arginine (Arg) bioavailability would be associated with airflow abnormalities and inflammation in subjects with asthma, and would be informative for asthma severity. METHODS: Arg bioavailability was assessed in subjects with severe and nonsevere asthma and healthy control subjects by determination of plasma Arg relative to its metabolic products, ornithine and citrulline, and relative to methylarginine inhibitors of NO synthases, and by serum arginase activity. Inflammatory parameters, including fraction of exhaled NO (Fe(NO)), IgE, skin test positivity to allergens, bronchoalveolar lavage, and blood eosinophils, were also evaluated. MEASUREMENTS AND MAIN RESULTS: Subjects with asthma had greater Arg bioavailability, but also increased Arg catabolism compared with healthy control subjects, as evidenced by higher levels of Fe(NO) and serum arginase activity. However, Arg bioavailability was positively associated with Fe(NO) only in healthy control subjects; Arg bioavailability was unrelated to Fe(NO) or other inflammatory parameters in severe or nonsevere asthma. Inflammatory parameters were related to airflow obstruction and reactivity in nonsevere asthma, but not in severe asthma. Conversely, Arg bioavailability was related to airflow obstruction in severe asthma, but not in nonsevere asthma. Modeling confirmed that measures of Arg bioavailabilty predict airflow obstruction only in severe asthma. CONCLUSIONS: Unlike Fe(NO), Arg bioavailability is not a surrogate measure of inflammation; however, Arg bioavailability is strongly associated with airflow abnormalities in severe asthma.


Asunto(s)
Arginasa/metabolismo , Arginina/metabolismo , Asma/metabolismo , Óxido Nítrico/metabolismo , Adulto , Arginasa/sangre , Arginina/sangre , Asma/fisiopatología , Disponibilidad Biológica , Pruebas Respiratorias , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Espirometría
16.
Eur Heart J ; 29(20): 2506-13, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18687662

RESUMEN

AIMS: To investigate the association of arginine methylation with myocardial function and prognosis in chronic systolic heart failure patients. METHODS AND RESULTS: Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), as well as N-mono-methylarginine (MMA) and methyl-lysine, were simultaneously measured by tandem mass spectrometry in 132 patients with chronic systolic heart failure with echocardiographic evaluation and follow-up. Increasing ADMA and SDMA levels were associated with elevated natriuretic peptide levels (both P < 0.001), and increasing SDMA levels were associated with worsening renal function (P < 0.001). Higher plasma levels of methylated arginine metabolites (but not methyl-lysine) were associated with the presence of left ventricular (LV) diastolic dysfunction (E/septal E', Spearman's r = 0.31-0.36, P < 0.001). Patients taking beta-blockers had lower ADMA levels than those not taking beta-blockers [0.42 (0.33, 0.50) vs. 0.51 (0.40, 0.58), P < 0.001]. Only increasing ADMA levels were associated with advanced right ventricular (RV) systolic dysfunction. Elevated ADMA levels remained a consistent independent predictor of adverse clinical events (hazard ratio = 1.64, 95% CI: 1.20-2.22, P = 0.002). CONCLUSION: In chronic systolic heart failure, accumulation of methylated arginine metabolites is associated with the presence of LV diastolic dysfunction. Among the methylated derivatives of arginine, ADMA provides the strongest independent prediction of disease progression and adverse long-term outcomes.


Asunto(s)
Arginina/análogos & derivados , Insuficiencia Cardíaca Sistólica/metabolismo , Péptidos Natriuréticos/metabolismo , Arginina/efectos adversos , Arginina/metabolismo , Biomarcadores/metabolismo , Enfermedad Crónica , Diástole/efectos de los fármacos , Progresión de la Enfermedad , Ecocardiografía Doppler , Electrocardiografía , Femenino , Insuficiencia Cardíaca Sistólica/fisiopatología , Humanos , Masculino , Metilación , Persona de Mediana Edad , Péptidos Natriuréticos/fisiología , Óxido Nítrico/biosíntesis , Valor Predictivo de las Pruebas , Estudios Prospectivos , Insuficiencia Renal/inducido químicamente , Espectrometría de Masas en Tándem/métodos , Resultado del Tratamiento , Remodelación Ventricular/fisiología
17.
J Clin Invest ; 129(1): 373-387, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30530985

RESUMEN

BACKGROUND: l-Carnitine, an abundant nutrient in red meat, accelerates atherosclerosis in mice via gut microbiota-dependent formation of trimethylamine (TMA) and trimethylamine N-oxide (TMAO) via a multistep pathway involving an atherogenic intermediate, γ-butyrobetaine (γBB). The contribution of γBB in gut microbiota-dependent l-carnitine metabolism in humans is unknown. METHODS: Omnivores and vegans/vegetarians ingested deuterium-labeled l-carnitine (d3-l-carnitine) or γBB (d9-γBB), and both plasma metabolites and fecal polymicrobial transformations were examined at baseline, following oral antibiotics, or following chronic (≥2 months) l-carnitine supplementation. Human fecal commensals capable of performing each step of the l-carnitine→γBB→TMA transformation were identified. RESULTS: Studies with oral d3-l-carnitine or d9-γBB before versus after antibiotic exposure revealed gut microbiota contribution to the initial 2 steps in a metaorganismal l-carnitine→γBB→TMA→TMAO pathway in subjects. Moreover, a striking increase in d3-TMAO generation was observed in omnivores over vegans/vegetarians (>20-fold; P = 0.001) following oral d3-l-carnitine ingestion, whereas fasting endogenous plasma l-carnitine and γBB levels were similar in vegans/vegetarians (n = 32) versus omnivores (n = 40). Fecal metabolic transformation studies, and oral isotope tracer studies before versus after chronic l-carnitine supplementation, revealed that omnivores and vegans/vegetarians alike rapidly converted carnitine to γBB, whereas the second gut microbial transformation, γBB→TMA, was diet inducible (l-carnitine, omnivorous). Extensive anaerobic subculturing of human feces identified no single commensal capable of l-carnitine→TMA transformation, multiple community members that converted l-carnitine to γBB, and only 1 Clostridiales bacterium, Emergencia timonensis, that converted γBB to TMA. In coculture, E. timonensis promoted the complete l-carnitine→TMA transformation. CONCLUSION: In humans, dietary l-carnitine is converted into the atherosclerosis- and thrombosis-promoting metabolite TMAO via 2 sequential gut microbiota-dependent transformations: (a) initial rapid generation of the atherogenic intermediate γBB, followed by (b) transformation into TMA via low-abundance microbiota in omnivores, and to a markedly lower extent, in vegans/vegetarians. Gut microbiota γBB→TMA/TMAO transformation is induced by omnivorous dietary patterns and chronic l-carnitine exposure. TRIAL REGISTRATION: ClinicalTrials.gov NCT01731236. FUNDING: NIH and Office of Dietary Supplements grants HL103866, HL126827, and DK106000, and the Leducq Foundation.


Asunto(s)
Aterosclerosis , Betaína/análogos & derivados , Carnitina/sangre , Clostridiales/metabolismo , Microbioma Gastrointestinal , Metilaminas/metabolismo , Animales , Aterosclerosis/metabolismo , Aterosclerosis/microbiología , Aterosclerosis/patología , Betaína/sangre , Femenino , Humanos , Masculino , Ratones , Proyectos Piloto , Veganos
18.
Toxins (Basel) ; 11(9)2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31450746

RESUMEN

Microcystins are potent hepatotoxins that have become a global health concern in recent years. Their actions in at-risk populations with pre-existing liver disease is unknown. We tested the hypothesis that the No Observed Adverse Effect Level (NOAEL) of Microcystin-LR (MC-LR) established in healthy mice would cause exacerbation of hepatic injury in a murine model (Leprdb/J) of Non-alcoholic Fatty Liver Disease (NAFLD). Ten-week-old male Leprdb/J mice were gavaged with 50 µg/kg, 100 µg/kg MC-LR or vehicle every 48 h for 4 weeks (n = 15-17 mice/group). Early mortality was observed in both the 50 µg/kg (1/17, 6%), and 100 µg/kg (3/17, 18%) MC-LR exposed mice. MC-LR exposure resulted in significant increases in circulating alkaline phosphatase levels, and histopathological markers of hepatic injury as well as significant upregulation of genes associated with hepatotoxicity, necrosis, nongenotoxic hepatocarcinogenicity and oxidative stress response. In addition, we observed exposure dependent changes in protein phosphorylation sites in pathways involved in inflammation, immune function, and response to oxidative stress. These results demonstrate that exposure to MC-LR at levels that are below the NOAEL established in healthy animals results in significant exacerbation of hepatic injury that is accompanied by genetic and phosphoproteomic dysregulation in key signaling pathways in the livers of NAFLD mice.


Asunto(s)
Hígado/efectos de los fármacos , Microcistinas/toxicidad , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Hígado/metabolismo , Hígado/patología , Masculino , Toxinas Marinas , Ratones , Ratones Endogámicos , Microcistinas/sangre , Microcistinas/orina , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Tamaño de los Órganos/efectos de los fármacos , Estrés Oxidativo/genética , Proteómica , Análisis de Supervivencia , Contaminantes Químicos del Agua/sangre , Contaminantes Químicos del Agua/orina
19.
Circulation ; 116(20): 2315-24, 2007 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-17967979

RESUMEN

BACKGROUND: It is unclear whether abnormalities of arginine and nitric oxide metabolism are related to hemodynamic dysfunction and mortality in patients with cardiogenic shock (CS) after acute myocardial infarction. METHODS AND RESULTS: Plasma metabolites reflecting arginine bioavailability, nitric oxide metabolism, and protein oxidation were analyzed by mass spectrometry in patients with CS (n=79) and age- and gender-matched patients with coronary artery disease and normal left ventricular function (n=79). CS patients had higher levels of asymmetric dimethylarginine (ADMA; P<0.0001), symmetric dimethylarginine (P<0.0001), monomethylarginine (P=0.0003), nitrotyrosine (P<0.0001), and bromotyrosine (P<0.0001) and lower levels of arginine (P<0.0001), ratio of arginine to ornithine (P=0.03), and ratio of arginine to ornithine plus citrulline) (P=0.0003). CS patients with elevated ADMA levels were 3.5-fold (95% confidence interval, 1.4 to 11.3; P=0.02) more likely to die in 30 days than patients with low ADMA levels. ADMA remained the only independent predictor of mortality on multiple logistic regression analysis. In patients with normal renal function, symmetric dimethylarginine levels inversely correlated with mean arterial pressure and systemic vascular resistance, whereas levels of ADMA correlated with pulmonary capillary wedge pressure and both systolic and diastolic pulmonary artery pressures. Despite dramatic elevations, levels of protein oxidation products did not predict hemodynamic dysfunction or mortality in CS patients. CONCLUSIONS: CS is characterized by an arginine-deficient and highly specific pro-oxidant state, with elevated levels of methylated arginine derivatives, including endogenous nitric oxide synthase inhibitors. Levels of methylated arginine derivatives strongly correlate with hemodynamic dysfunction. Among all clinical and laboratory parameters monitored, ADMA levels were the strongest independent predictor of 30-day mortality.


Asunto(s)
Arginina/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/mortalidad , Óxido Nítrico/metabolismo , Choque Cardiogénico/metabolismo , Choque Cardiogénico/mortalidad , Anciano , Biomarcadores , Citrulina/metabolismo , Humanos , Masculino , Metilación , Ornitina/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Valor Predictivo de las Pruebas
20.
J Chromatogr A ; 1573: 66-77, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30201162

RESUMEN

The protocols for solid-phase extraction (SPE) of six microcystins (MCs; MC-LR, MC-RR, MC-LA, MC-LF, MC-LW, and MC-YR) from mouse urine, mouse plasma, and human serum are reported. The quantification of those MCs in biofluids was achieved using HPLC-orbitrap-MS in selected-ion monitoring (SIM) mode, and MCs in urine samples were also quantified by ultra-HPLC-triple quadrupole-tandem mass spectrometry (UHPLC-QqQ-MS/MS) in multiple reaction monitoring (MRM) mode. Under optimal conditions, the extraction recoveries of MCs from samples spiked at two different concentrations (1 µg/L and 10 µg/L) ranged from 90.4% to 104.3% with relative standard deviations (RSDs) ≤ 4.7% for mouse urine, 90.4-106.9% with RSDs ≤ 6.3% for mouse plasma, and 90.0-104.8% with RSDs ≤ 5.0% for human serum. Matrix-matched internal standard calibration curves were linear with R2 ≥ 0.9950 for MC-LR, MC-RR and MC-YR, and R2 ≥ 0.9883 for MC-LA, MC-LF, and MC-LW. The limits of quantification (LOQs) in spiked urine samples were ∼0.13 µg/L for MC-LR, MC-RR, and MC-YR, and ∼0.50 µg/L for MC-LA, MC-LF, and MC-LW, while the LOQs in spiked plasma and serum were ∼0.25 µg/L for MC-LR, MC-RR, and MC-YR, and ∼1.00 µg/L for MC-LA, MC-LF, and MC-LW. The developed methods were applied in a proof-of-concept study to quantify urinary and blood concentrations of MC-LR after oral administration to mice. The urine of mice administered 50 µg of MC-LR per kg bodyweight contained on average 1.30 µg/L of MC-LR (n = 8), while mice administered 100 µg of MC-LR per kg bodyweight had average MC-LR concentration of 2.82 µg/L (n = 8). MC-LR was also quantified in the plasma of the same mice. The results showed that increased MC-LR dosage led to larger urinary and plasma MC-LR concentrations and the developed methods were effective for the quantification of MCs in mouse biofluids.


Asunto(s)
Análisis Químico de la Sangre/métodos , Cromatografía Líquida de Alta Presión , Microcistinas/sangre , Microcistinas/orina , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Urinálisis/métodos , Animales , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA