Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biochem Biophys Res Commun ; 424(4): 777-80, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22809499

RESUMEN

Human noroviruses are the primary cause of foodborne gastroenteritis. Potent and safe inhibitors are needed for the treatment/prophylaxis of norovirus infections. We demonstrate that Favipiravir [T-705, a drug in advanced clinical development for the treatment of infections with the influenza virus] inhibits in vitro murine norovirus replication. Time-of-drug addition studies reveal that T-705 exerts its activity at a time-point that coincides with onset of viral RNA synthesis, which is in line with the viral polymerase as the presumed target.


Asunto(s)
Amidas/farmacología , Norovirus/efectos de los fármacos , Pirazinas/farmacología , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Ratones , ARN Viral/antagonistas & inhibidores , ARN Viral/biosíntesis
2.
Biochem Biophys Res Commun ; 427(4): 796-800, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23063849

RESUMEN

We here report on the activity of 2'-C-methylcytidine (2CMC) [a nucleoside polymerase inhibitor of the hepatitis C virus (HCV)] on the in vitro replication of (murine) norovirus (MNV). 2CMC inhibits (i) virus-induced CPE formation, (ii) viral RNA synthesis and (iii) infectious progeny formation with EC(50) values of ∼2µM. 2CMC acts at a time-point that coincides with the onset of viral RNA synthesis. Even following 30 passages of selective pressure no MNV-resistant virus was selected, which is in line with the high barrier to resistance of the nucleoside analogue for HCV. When combined with the broad-spectrum RNA virus inhibitor ribavirin, a marked antagonistic activity was observed indicating that these molecules should not be combined for the treatment of norovirus infections. Our results suggest that 2'-C-methyl nucleoside analogues should be further explored for the treatment and prophylaxis of norovirus infections.


Asunto(s)
Antivirales/farmacología , Citidina/análogos & derivados , Norovirus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Citidina/farmacología , Farmacorresistencia Viral/genética , Ratones , Norovirus/genética , Norovirus/fisiología , Ribavirina/farmacología
3.
Sci Rep ; 6: 31819, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27545976

RESUMEN

The chikungunya virus (CHIKV) has become a substantial global health threat due to its massive re-emergence, the considerable disease burden and the lack of vaccines or therapeutics. We discovered a novel class of small molecules ([1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones) with potent in vitro activity against CHIKV isolates from different geographical regions. Drug-resistant variants were selected and these carried a P34S substitution in non-structural protein 1 (nsP1), the main enzyme involved in alphavirus RNA capping. Biochemical assays using nsP1 of the related Venezuelan equine encephalitis virus revealed that the compounds specifically inhibit the guanylylation of nsP1. This is, to the best of our knowledge, the first report demonstrating that the alphavirus capping machinery is an excellent antiviral drug target. Considering the lack of options to treat CHIKV infections, this series of compounds with their unique (alphavirus-specific) target offers promise for the development of therapy for CHIKV infections.


Asunto(s)
Antivirales/farmacología , Virus Chikungunya/genética , Pirimidinonas/farmacología , Proteínas no Estructurales Virales/genética , Sustitución de Aminoácidos , Animales , Antivirales/química , Virus Chikungunya/efectos de los fármacos , Virus Chikungunya/metabolismo , Chlorocebus aethiops , Farmacorresistencia Viral/efectos de los fármacos , Encefalomielitis Equina/virología , Caballos , Estructura Molecular , Pirimidinonas/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Células Vero , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-16247948

RESUMEN

Three acyclic nucleoside phosphonates (ANPs) have been formally approved for clinical use in the treatment of 1) cytomegalovirus retinitis in AIDS patients (cidofovir, by the intravenous route), 2) chronic hepatitis B virus (HBV) infections (adefovir dipivoxil, by the oral route), and 3) human immunodeficiency virus (HIV) infections (tenofovir disoproxil fumarate, by the oral route). The activity spectrum of cidofovir {(S)- 1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine [(S)-HPMPC)]}, like that of (S)-HPMPA [(S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine) and (S)-HPMPDAP [(S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2, 6-diaminopurine), encompasses a broad spectrum of DNA viruses, including polyoma-, papilloma-, adeno-, herpes-, and poxviruses. Adefovir {9-[2-(phosphonomethoxy)ethyl]adenine (PMEA)} and tenofovir [(R)-9-[2-(phosphonomethoxy) propyl]adenine [(R)-PMPA)]} are particularly active against retroviruses (ie., HIV) and hepadnaviruses (ie., HBV); additionally, PMEA also shows activity against herpes- and poxviruses. We have recently identified a new class of ANPs, namely 6-[2-(phosphonomethoxy)alkoxy]-2,4-diaminopyrimidines, named, in analogy with their alkylpurine counterparts, HPMPO-DAPy, PMEO-DAPy, and (R)-PMPO-DAPy. These compounds exhibit an antiviral activity spectrum and potency that is similar to that of (S)-HPMPDAP, PMEA, and (R)-PMPA, respectively. Thus, PMEO-DAPy and (R)-PMPO-DAPy, akin to PMEA and (R)-PMPA, proved particularly active against HIV- 1, HIV-2, and the murine retrovirus Moloney sarcoma virus (MSV). PMEO-DAPy and (R)-PMPO-DAPy also showed potent activity against both wild-type and lamivudine-resistant strains of HBV. HPMPO-DAPy was found to inhibit different poxviruses (ie., vaccinia, cowpox, and orf) at a similar potency as cidofovir. HPMPO-DAPy also proved active against adenoviruses. In vivo, HPMPO-DAPy proved equipotent to cidofovir in suppressing vaccinia virus infection (tail lesion formation) in immunocompetent mice and promoting healing of disseminated vaccinia lesions in athymic-nude mice. The 6-[2-(phosphonomethoxy)alkoxy]-2,4-diaminopyrimidines offer substantial potential for the treatment of a broad range of retro-, hepadna-, herpes-, adeno-, and poxvirus infections.


Asunto(s)
Fármacos Anti-VIH/síntesis química , Antivirales/síntesis química , Pirimidinas/síntesis química , Pirimidinas/farmacología , Adenoviridae/metabolismo , Infecciones por Adenoviridae/tratamiento farmacológico , Animales , Fármacos Anti-VIH/farmacología , Antivirales/farmacología , Línea Celular , Cidofovir , Citosina/análogos & derivados , Citosina/farmacología , Infecciones por VIH/tratamiento farmacológico , Humanos , Ratones , Ratones Desnudos , Modelos Químicos , Virus del Sarcoma Murino de Moloney/metabolismo , Organofosfonatos/síntesis química , Organofosfonatos/farmacología , Papillomaviridae/metabolismo , Infecciones por Papillomavirus/tratamiento farmacológico , Poxviridae/metabolismo , Infecciones por Poxviridae/tratamiento farmacológico , Purinas/química , Vaccinia/tratamiento farmacológico , Virus Vaccinia/metabolismo
5.
Antivir Chem Chemother ; 13(3): 157-64, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12448688

RESUMEN

The initial step during hepatitis B virus (HBV) infection is the specific attachment of the virus to the hepatocyte. Here we studied whether the binding of HBV to hepatocytes can, as is the case with most other enveloped viruses, be blocked by polyanionic compounds. Viral particles produced by HepAD38 cells were used as inoculum and HBV-negative HepG2 cells, as well as primary human hepatocytes, as target cells. Three sulphated polymers, that is, PAVAS (a co-polymer of acrylic acid with vinyl alcohol sulphate), heparin and dextran sulphate (DS) (MW 5000), and the sulphonated polymer PAMPS [poly(2-acryl-amido-2-methyl-1-propanesulfonic acid] (MW approximately 7000-12000), proved strong inhibitors of the binding of HBV to HepG2 cells and primary hepatocytes. The 50% effective concentration (EC50) for inhibition of HBV binding to HepG2 cells by PAVAS, heparin, DS and PAMPS was 1.3 microg/ml, 1.6 microg/ml, 1.8 microg/ml and 3.3 microg/ml, respectively, and to primary hepatocytes 1.6 microg/ml (PAVAS), 1.6 microg/ml (heparin), 2.6 microg/ml (DS) and 4.1 microg/ml (PAMPS). These values are in the same range as the concentrations required for these compounds to prevent such viruses as herpesviruses and HIV from binding to cells. These findings may be helpful in elucidating the mechanism of the initial interaction of HBV with hepatocytes.


Asunto(s)
Antivirales/farmacología , Adhesión Celular/efectos de los fármacos , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/fisiología , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Polímeros/química , Polímeros/farmacología , Resinas Acrílicas/química , Resinas Acrílicas/farmacología , Animales , Antivirales/química , Células CHO , Células Cultivadas , Cricetinae , Sulfato de Dextran/química , Sulfato de Dextran/farmacología , Relación Dosis-Respuesta a Droga , Heparina/química , Heparina/farmacología , Liasa de Heparina/metabolismo , Humanos , Modelos Logísticos , Proteínas de la Membrana/metabolismo , Estructura Molecular , Unión Proteica/efectos de los fármacos , Ácidos Sulfónicos/química , Ácidos Sulfónicos/farmacología
6.
Verh K Acad Geneeskd Belg ; 61(6): 661-97; discussion 697-9, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10655776

RESUMEN

The family of the Flaviviridae contains 3 genera: (i) the hepaciviruses, to which belongs Hepatitis C virus (HCV), (ii) the flaviviruses and (iii) the pestiviruses. Over 140 million people, more than four times the number of HIV-positive individuals, are chronically infected with the HCV. Hepatitis G virus (HGV) has not yet been assigned to a genus. The impact of this recently discovered virus is yet to be established. Infections with flaviviruses such as Yellow Fever virus (YFV), Dengue Fever virus (DENV), Japanese Encephalitis virus (JEV) and Tick-borne Encephalitis virus (TBEV) are emerging world-wide. The Pestiviruses, Bovine Viral Diarrhea virus (BVDV), Classical Swine Fever virus (CSFV) and Border Disease virus (BDV) have a serious impact on life-stock. At present, only treatment with interferon, alone or combined with ribavirin, has been approved for the treatment of HCV infections. No specific antivirals are available for the treatment of infections with Hepaci-, Flavi- or Pestiviruses. Possible targets for inhibition of the replication of Flaviviridae are the binding to, and the uptake of the virus in the cell; the internal ribosomal entry site (IRES) of Hepaci- and Pestiviruses; viral proteases; the viral RNA-dependent RNA polymerase and the viral helicase. The search for specific inhibitors of HCV replication is hindered by the absence of an efficient cell culture system for propagation of this virus. In addition, small laboratory animals, including mice, are not susceptible to HCV infection. Flaviviruses may cause infection in mice, but do so mainly following direct intracerebral inoculation. We have established a small animal model for flavivirus infections in SCID mice inoculated peripherally with the murine flavivirus Modoc.


Asunto(s)
Infecciones por Flaviviridae , Flaviviridae/clasificación , Animales , Bovinos , Modelos Animales de Enfermedad , Flaviviridae/genética , Flaviviridae/patogenicidad , Infecciones por Flaviviridae/clasificación , Infecciones por Flaviviridae/epidemiología , Infecciones por Flaviviridae/veterinaria , Humanos , Ratones , Ratones SCID
7.
Artículo en Inglés | MEDLINE | ID: mdl-11563039

RESUMEN

Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus [i.e. herpes simplex virus type 1 (HSV-1), and type 2 (HSV-2), varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV)] infections. In recent years, several new guanosine analogues have been developed, including the 3-membered cyclopropylmethyl and -methenyl derivatives (A-5021 and synguanol) and the 6-membered D- and L-cyclohexenyl derivatives. The activity of the acyclic/carbocyclic guanosine analogues has been determined against a wide spectrum of viruses, including the HSV-1, HSV-2, VZV, HCMV, and also human herpesviruses type 6 (HHV-6), type 7 (HHV-7) and type 8 (HHV-8), and hepatitis B virus (HBV). The new guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) were found to be particularly active against those viruses (HSV-1, HSV-2, VZV) that encode for a specific thymidine kinase (TK), suggesting that their antiviral activity (at least partially) depends on phosphorylation by the virus-induced TK. Marked antiviral activity was also noted with A-5021 against HHV-6 and with D- and L-cyclohexenyl G against HCMV and HBV. The antiviral activity of the acyclic/carbocyclic nucleoside analogues could be markedly potentiated by mycophenolic acid, a potent inhibitor of inosine 5'-monophosphate (IMP) dehydrogenase. The new carbocyclic guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also an antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transduced by the viral (HSV-1, VZV) TK gene.


Asunto(s)
Antivirales/farmacología , Guanosina/análogos & derivados , Herpesviridae/efectos de los fármacos , Animales , Guanosina/farmacología , Humanos
8.
Antimicrob Agents Chemother ; 50(5): 1768-72, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16641448

RESUMEN

Clinical nonrandomized trials demonstrate some efficacy for ribavirin in the treatment of patients with severe Nipah virus-induced encephalitis. We report here that EICAR, the 5-ethynyl analogue of ribavirin, and the OMP-decarboxylase inhibitors 6-aza-uridine and pyrazofurin have strong antiviral activity against Nipah virus replication in vitro. Ribavirin and 6-aza-uridine were tested further in hamsters infected with a lethal dose of Nipah virus. The activity of these small-molecule inhibitors was compared with that of the interferon inducer poly(I)-poly(C(12)U). Both ribavirin and 6-aza-uridine were able to delay but not prevent Nipah virus-induced mortality. Poly(I)-poly(C(12)U), at 3 mg/kg of body weight daily from the day of infection to 10 days postinfection, prevented mortality in 5 of 6 infected animals.


Asunto(s)
Modelos Animales de Enfermedad , Virus Nipah/efectos de los fármacos , Poli I-C/uso terapéutico , Ribavirina/uso terapéutico , Animales , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Cricetinae , Ensayo de Inmunoadsorción Enzimática , Células HeLa , Humanos , Inmunoglobulina G/sangre , Inyecciones Intraperitoneales , Dosificación Letal Mediana , Masculino , Mesocricetus , Poli I-C/administración & dosificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribavirina/administración & dosificación , Células Vero , Carga Viral
9.
Virology ; 279(1): 27-37, 2001 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-11145886

RESUMEN

The murine Flavivirus Modoc replicates well in Vero cells and appears to be as equally sensitive as both yellow fever and dengue fever virus to a selection of antiviral agents. Infection of SCID mice, by either the intracerebral, intraperitoneal, or intranasal route, results in 100% mortality. Immunocompetent mice and hamsters proved to be susceptible to the virus only when inoculated via the intranasal or intracerebral route. Animals ultimately die of (histologically proven) encephalitis with features similar to Flavivirus encephalitis in man. Viral RNA was detected in the brain, spleen, and salivary glands of infected SCID mice and the brain, lung, kidney, and salivary glands of infected hamsters. In SCID mice, the interferon inducer poly IC protected against Modoc virus-induced morbidity and mortality and this protection was associated with a reduction in infectious virus content and viral RNA load. Infected hamsters shed the virus in the urine. This allows daily monitoring of (inhibition of) viral replication, by means of a noninvasive method and in the same animal. The Modoc virus model appears attractive for the study of chemoprophylactic or chemotherapeutic strategies against Flavivirus infections.


Asunto(s)
Antivirales/farmacología , Modelos Animales de Enfermedad , Encefalitis Viral , Infecciones por Flavivirus , Flavivirus , Flavivirus/efectos de los fármacos , Animales , Antivirales/uso terapéutico , Encéfalo/patología , Chlorocebus aethiops , Cricetinae , Encefalitis Viral/tratamiento farmacológico , Encefalitis Viral/patología , Encefalitis Viral/fisiopatología , Encefalitis Viral/virología , Flavivirus/genética , Flavivirus/aislamiento & purificación , Flavivirus/patogenicidad , Infecciones por Flavivirus/tratamiento farmacológico , Infecciones por Flavivirus/patología , Infecciones por Flavivirus/fisiopatología , Infecciones por Flavivirus/virología , Humanos , Ratones , Pruebas de Sensibilidad Microbiana/métodos , Células Vero , Replicación Viral
10.
Clin Microbiol Rev ; 13(1): 67-82, table of contents, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10627492

RESUMEN

The family Flaviviridae contains three genera: Hepacivirus, Flavivirus, and Pestivirus. Worldwide, more than 170 million people are chronically infected with Hepatitis C virus and are at risk of developing cirrhosis and/or liver cancer. In addition, infections with arthropod-borne flaviviruses (such as dengue fever, Japanese encephalitis, tick-borne encephalitis, St. Louis encephalitis, Murray Valley encephalitis, West Nile, and yellow fever viruses) are emerging throughout the world. The pestiviruses have a serious impact on livestock. Unfortunately, no specific antiviral therapy is available for the treatment or the prevention of infections with members of the Flaviviridae. Ongoing research has identified possible targets for inhibition, including binding of the virus to the cell, uptake of the virus into the cell, the internal ribosome entry site of hepaciviruses and pestiviruses, the capping mechanism of flaviviruses, the viral proteases, the viral RNA-dependent RNA polymerase, and the viral helicase. In light of recent developments, the prevalence of infections caused by these viruses, the disease spectrum, and the impact of infections, different strategies that could be pursued to specifically inhibit viral targets and animal models that are available to study the pathogenesis and antiviral strategies are reviewed.


Asunto(s)
Antivirales/uso terapéutico , Infecciones por Flaviviridae/terapia , Flaviviridae/fisiología , Animales , Flaviviridae/genética , Infecciones por Flaviviridae/tratamiento farmacológico , Infecciones por Flaviviridae/virología , Terapia Genética , Humanos , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA