Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cereb Cortex ; 33(5): 1814-1825, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-35511705

RESUMEN

Exposure therapy is the most effective approach of behavioral therapy for anxiety and post-traumatic stress disorder (PTSD). But fear is easy to reappear even after successful extinction. So, identifying novel strategies for augmenting exposure therapy is rather important. It was reported that exercise had beneficial effects on cognitive and memory deficits. However, whether exercise could affect fear memory, especially for fear extinction remained elusive. Here, our results showed that exposure to acute mild exercise 1 or 2 h before extinction training can augment recent fear extinction retention and 2 h for the remote fear extinction retention. These beneficial effects could be attributed to increased YTHDF1 expression in medial prefrontal cortex (mPFC). Furthermore, by using an AAV-shRNA-based approach to silence YTHDF1 expression via stereotactic injection in prelimbic cortex (PL) or infralimbic cortex (IL), respectively, we demonstrated that silence YTHDF1 in IL, but not in PL, blunted augmentation of exposure therapy induced by acute mild exercise and accompanied with decreased NR2B and GluR1 expression. Moreover, YTHDF1 modulated dendritic spines remodeling of pyramidal neuron in IL. Collectively, our findings suggested that acute mild exercise acted as an effective strategy in augmenting exposure therapy with possible implications for understanding new treatment underlying PTSD.


Asunto(s)
Extinción Psicológica , Miedo , Ratas , Animales , Extinción Psicológica/fisiología , Miedo/fisiología , Ratas Sprague-Dawley , Corteza Prefrontal/metabolismo , Ansiedad
2.
Neurobiol Learn Mem ; 179: 107383, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33460788

RESUMEN

BACKGROUND: Inaccurate fear memories can be maladaptive and potentially portrait a core symptomatic dimension of fear adaptive disorders such as post-traumatic stress disorder (PTSD), which is generally characterized by an intense and enduring memory for the traumatic events. Evidence exists in support of epigenetic regulation of fear behavior. Brd4, a member of the bromodomain and extra-terminal domain (BET) protein family, serves as a chromatin "reader" by binding to histones in acetylated lysine residues, and hence promotes transcriptional activities. However, less is known whether Brd4 participates in modulating cognitive activities especially memory formation and extinction. Here we provide evidence for a role of Brd4 in modulation of auditory fear memory. Auditory fear conditioning resulted in a biphasic Brd4 activation in the anterior cingulate cortex (ACC) and hippocampus of adult mice. Thus, Brd4 phosphorylation occurred 6 h and 3-14 days, respectively, after auditory fear conditioning. Systemic inhibition of Brd4 with a BET inhibitor, JQ1, impaired the extinction of remote (i.e., 14 days after conditioning) fear memory. Further, conditional Brd4 knockout in excitatory neurons of the forebrain impaired remote fear extinction as observed in the JQ1-treated mice. Herein, we identified that Brd4 is essential for extinction of remote fear in rodents. These results thus indicate that Brd4 potentially plays a role in the pathogenesis of PTSD.


Asunto(s)
Estimulación Acústica , Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Miedo , Giro del Cíngulo/metabolismo , Hipocampo/metabolismo , Memoria/fisiología , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Azepinas/farmacología , Condicionamiento Clásico/efectos de los fármacos , Epigénesis Genética , Extinción Psicológica/efectos de los fármacos , Memoria/efectos de los fármacos , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Largo Plazo/fisiología , Ratones , Ratones Noqueados , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Triazoles/farmacología
3.
BMC Neurosci ; 17: 3, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26754043

RESUMEN

BACKGROUND: In highly complex social settings, an animal's motivational drive to pursue an object depends not only on the intrinsic properties of the object, but also on whether the decision-making animal perceives an object as being the most desirable among others. Mimetic desire refers to a subject's preference for objects already possessed by another subject. To date, there are no appropriate animal models for studying whether mimetic desire is at play in guiding the decision-making process. Furthermore, the neuropharmacological bases of decision-making processes are not well understood. In this study, we used an animal model (rat) to investigate a novel food-foraging paradigm for decision-making, with or without a mimetic desire paradigm. RESULTS: Faced with the choice of foraging in a competitive environment, rats preferred foraging for the desirable object, indicating the rats' ability for decision-making. Notably, treatment with the non-competitive N-methyl-D-aspartate receptor antagonist MK-801, but not with the dopamine D1 or D2 receptor antagonists, SCH23390 and haloperidol, respectively, suppressed the food foraging preference when there was a competing resident rat in the cage. None of these three antagonists affected the food-foraging preference for palatable food. Moreover, MK-801 and SCH23390, but not haloperidol, were able to abolish the desirable environment effect on standard food-foraging activities in complex social settings. CONCLUSIONS: These results highlight the concept that mimetic desire exerts a powerful influence on food-foraging decision-making in rats and, further, illustrate the various roles of the glutamatergic and dopaminergic systems in mediating these processes.


Asunto(s)
Conducta Competitiva/fisiología , Toma de Decisiones/fisiología , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Benzazepinas/administración & dosificación , Conducta Competitiva/efectos de los fármacos , Toma de Decisiones/efectos de los fármacos , Maleato de Dizocilpina/administración & dosificación , Antagonistas de los Receptores de Dopamina D2/administración & dosificación , Preferencias Alimentarias/efectos de los fármacos , Preferencias Alimentarias/fisiología , Haloperidol/administración & dosificación , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
4.
BMC Neurosci ; 16: 14, 2015 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-25884414

RESUMEN

BACKGROUND: Neuropathic pain evoked by nerve injury is frequently accompanied by deterioration of emotional behaviors, but the underlying signaling mechanisms remain elusive. Glutamate (Glu) is the major mediator of excitatory synaptic transmission throughout the brain, and abnormal activity of the glutamatergic system has been implicated in the pathophysiology of pain and associated emotional comorbidities. In this study we used the partial sciatic nerve ligation (PSNL) model of neuropathic pain in rats to characterize the development of anxiety-like behavior, the expression of glutamatergic receptors, and the phosphorylation of extracellular signal-regulated kinase (ERK) in the hippocampus, the region that encodes memories related to emotions. RESULTS: We found that the mechanical withdrawal threshold was significantly reduced and an anxiety-like behavior was increased as determined via open field tests and elevated plus-maze tests at 28 days after injury. No significant differences were found in the ratio of sucrose preference and immobility time detected by sucrose preference tests and forced swimming tests respectively, possibly due to the timing factor. The expression of N-methyl-D-aspartate (NMDA) receptor subtypes NR1 and NR2B, but not NR2A, GluR1, or GluR2 (the main subtype of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] receptor) in the hippocampus of injured rats was significantly reduced. Moreover, PSNL resulted in decreased phosphorylation of ERK1/2 in the hippocampus. Intriguingly, treatment with D-serine (a co-agonist of NMDA receptor, 1 g/kg intraperitoneally) reduced the anxiety-like behavior but not the mechanical hypersensitivity induced by PSNL. CONCLUSIONS: PSNL can induce significant anxiety-like but not depression-like behavior, and trigger down-regulation of NMDA but not AMPA receptors in the hippocampus at 28 days after injury.


Asunto(s)
Ansiedad/fisiopatología , Hipocampo/metabolismo , Neuralgia/fisiopatología , Receptores de Glutamato/metabolismo , Neuropatía Ciática/fisiopatología , Anhedonia/efectos de los fármacos , Anhedonia/fisiología , Animales , Ansiolíticos/farmacología , Ansiedad/tratamiento farmacológico , Ansiedad/etiología , Sacarosa en la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Hiperalgesia/fisiopatología , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Neuralgia/complicaciones , Neuralgia/tratamiento farmacológico , Umbral del Dolor/efectos de los fármacos , Umbral del Dolor/fisiología , Distribución Aleatoria , Ratas Sprague-Dawley , Nervio Ciático/fisiopatología , Neuropatía Ciática/complicaciones , Neuropatía Ciática/tratamiento farmacológico , Serina/farmacología
5.
BMC Neurosci ; 15: 86, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25026909

RESUMEN

BACKGROUND: Previous studies have shown that melatonin is involved in the processes that contribute to learning and memory. At present study, we tested the effects of exogenous melatonin (2.5 mg/kg) on the acquisition, expression and extinction of cued fear in rats. RESULTS: Results showed that a single afternoon administration 30 min before conditioning has no effect on the acquisition of cued fear. Compared to rats injected with vehicle, rats injected with melatonin 30 min before extinction training presented a significant lower freezing during both extinction training and extinction test phases, however, freezing response did not differ for the initial four trials during extinction training. Melatonin injected immediately after extinction training was ineffective on extinction learning. CONCLUSIONS: These results suggest that melatonin, at the dose applied in this study, facilitates the extinction of conditional cued fear without affecting its acquisition or expression, and melatonin facilitates cued fear extinction only when it is present during extinction training. These findings extend previous research on the melatonin effects on learning and memory and suggest that melatonin may serve as an agent for the treatment of anxiety disorders such as posttraumatic stress disorder (PTSD).


Asunto(s)
Condicionamiento Psicológico/efectos de los fármacos , Señales (Psicología) , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Melatonina/administración & dosificación , Nootrópicos/administración & dosificación , Animales , Reacción Cataléptica de Congelación/efectos de los fármacos , Masculino , Ratas Sprague-Dawley , Factores de Tiempo
6.
Behav Brain Res ; 465: 114960, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38494129

RESUMEN

Cognitive behavioral therapy, rooted in exposure therapy, is currently the primary approach employed in the treatment of anxiety-related conditions, including post-traumatic stress disorder (PTSD). In laboratory settings, fear extinction in animals is a commonly employed technique to investigate exposure therapy; however, the precise mechanisms underlying fear extinction remain elusive. Casein kinase 2 (CK2), which regulates neuroplasticity via phosphorylation of its substrates, has a significant influence in various neurological disorders, such as Alzheimer's disease and Parkinson's disease, as well as in the process of learning and memory. In this study, we adopted a classical Pavlovian fear conditioning model to investigate the involvement of CK2 in remote fear memory extinction and its underlying mechanisms. The results indicated that the activity of CK2 in the medial prefrontal cortex (mPFC) of mice was significantly upregulated after extinction training of remote cued fear memory. Notably, administration of the CK2 inhibitor CX-4945 prior to extinction training facilitated the extinction of remote fear memory. In addition, CX-4945 significantly upregulated the expression of p-ERK1/2 and p-CREB in the mPFC. Our results suggest that CK2 negatively regulates remote fear memory extinction, at least in part, by inhibiting the ERK-CREB pathway. These findings contribute to our understanding of the underlying mechanisms of remote cued fear extinction, thereby offering a theoretical foundation and identifying potential targets for the intervention and treatment of PTSD.


Asunto(s)
Miedo , Trastornos por Estrés Postraumático , Animales , Ratones , Quinasa de la Caseína II/metabolismo , Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Corteza Prefrontal/metabolismo , Trastornos por Estrés Postraumático/metabolismo
7.
Eur J Pharmacol ; 978: 176759, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901527

RESUMEN

Excessive or inappropriate fear responses can lead to anxiety-related disorders, such as post-traumatic stress disorder (PTSD). Studies have shown that microglial activation occurs after fear conditioning and that microglial inhibition impacts fear memory. However, the role of microglia in fear memory recall remains unclear. In this study, we investigated the activated profiles of microglia after the recall of remote-cued fear memory and the role of activated microglia in the extinction of remote-cued fear in adult male C57BL/6 mice. The results revealed that the expression of the microglia marker Iba1 increased in the medial prefrontal cortex (mPFC) at 10 min and 1 h following remote-cued fear recall, which was accompanied by amoeboid morphology. Inhibiting microglial activation through PLX3397 treatment before remote fear recall did not affect recall, reconsolidation, or regular extinction but facilitated recall-extinction and mitigated spontaneous recovery. Moreover, our results demonstrated reduced co-expression of Iba1 and postsynaptic density protein 95 (PSD95) in the mPFC, along with decreases in the p-PI3K/PI3K ratio, p-Akt/Akt ratio, and KLF4 expression after PLX3397 treatment. Our results suggest that microglial activation after remote fear recall impedes fear extinction through the pruning of synapses in the mPFC, accompanied by alterations in the expression of the PI3K/AKT/KLF4 pathway. This finding can help elucidate the mechanism involved in remote fear extinction, contributing to the theoretical foundation for the intervention and treatment of PTSD.

8.
Behav Brain Res ; 452: 114597, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37487838

RESUMEN

As social beings, animals and humans alike make real life decisions that are often influenced by other members. Most current research has focused on the influence of same-sex peers on individual decision-making, with potential opposite sex effect scarcely explored. Here, we developed a behavioral model to observe food foraging decision-making in female rats under various social situations. We found that female rats preferred to forage food from male over female rats or from the no-rat storage side. Female rats were more likely to forage food from familiar males than from unfamiliar. This opposite-sex preference was not altered by the lure of sweet food, or with estrous cycle, nor under stress conditions. These results suggest that the opposite sex influences food foraging decision-making in female rats. The behavioral model established could facilitate future investigation into the underlying neurobiological mechanisms.


Asunto(s)
Conducta Animal , Alimentos , Humanos , Ratas , Masculino , Femenino , Animales , Conducta Social , Ciclo Estral
9.
Aging Dis ; 14(5): 1853-1869, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37196127

RESUMEN

A wealth of knowledge regarding glial cell-mediated neuroinflammation, which contributes to cognitive deficits in Alzheimer's disease (AD) has emerged in recent years. Contactin 1(CNTN1), a member of the cell adhesion molecule and immunoglobulin supergene family, is centrally involved in axonal growth regulation and is also a key player in inflammation-associated disorders. However, whether CNTN1 plays a role in inflammation-related cognitive deficits and how this process is triggered and orchestrated remain to be fully elucidated. In this study, we examined postmortem brains with AD. CNTN1 immunoreactivity was markedly increased, particularly in the CA3 subregion, as compared with non-AD brains. Furthermore, by applying an adeno-associated virus-based approach to overexpress CNTN1 directly via stereotactic injection in mice, we demonstrated that hippocampal CNTN1 overexpression triggered cognitive deficits detected by novel object-recognition, novel place-recognition and social cognition tests. The mechanisms underlying these cognitive deficits could be attributed to hippocampal microglia and astrocyte activation, which led to aberrant expression of excitatory amino acid transporters (EAAT)1/EAAT2. This resulted in long-term potentiation (LTP) impairment that could be reversed by minocyline, an antibiotic and the best-known inhibitor of microglial activation. Taken together, our results identified Cntn1 as a susceptibility factor involved in regulating cognitive deficits via functional actions in the hippocampus. This factor correlated with microglial activation and triggered astrocyte activation with abnormal EAAT1/EAAT2 expression and LTP impairment. Overall, these findings may significantly advance our understanding of the pathophysiological mechanisms underlying the risk of neuroinflammation related cognitive deficits.

10.
Acta Histochem Cytochem ; 45(4): 219-25, 2012 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23012487

RESUMEN

In visceral pain, anxiety and pain occur simultaneously, but the etiogenesis of this effect is not yet well-described. The anterior cingulate cortex (ACC) is known to be associated with the affective response to noxious stimuli. The aim of the current study is to define the role of ACC extracellular signal-regulated (ERK)-1 and-2 (ERK1/2) activity in the development of pain-related anxiety/depression and the nocifensive response in acetic acid (AA)-elicited visceral pain. The model of visceral pain was created by intraperitoneal (ip) injection of AA to female Kunming mice. We found that AA injection resulted in a dynamic, bilateral ERK1/2 activation pattern in the ACC. Inhibition of ERK1/2 activation 2 hr after AA injection by subcutaneous (sc) injection of the mitogen-activating extracellular kinase (MEK) inhibitor, SL327, had no effect on the nocifensive responses, but did attenuate anxiety-like behavior, as determined by elevated plus-maze and open-field testing results. These data suggest that AA-induced visceral pain activates expression of ACC ERK1/2, which regulates visceral pain-related anxiety, but not the nocifensive response.

11.
Brain Res Bull ; 179: 13-24, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34848271

RESUMEN

Overweight induced by high-fat diet (HFD) represents one of the major health concerns in modern societies, which can cause lasting peripheral and central metabolic disorders in all age groups. Specifically, childhood obesity could lead to life-long impact on brain development and functioning. On the other hand, environmental enrichment (EE) has been demonstrated to be beneficial for learning and memory. Here, we explored the impact of high-fat diet on olfaction and organization of olfactory bulb cells in adolescent mice, and the effect of EE intervention thereon. Puberty mice (3-week-old) fed with HFD for 10 weeks exhibited poorer odor sensitivity and olfactory memory relative to controls consuming standard chows. The behavioral deficits were rescued in the HFD group with EE intervention. Neuroanatomically, parvalbumin (PV) interneurons in the olfactory bulb (OB) were reduced in the HFD-fed animals relative to control, while EE intervention also normalized this alteration. In contrast, cells expressing calbindin (CB), doublecortin (DCX) in the OB were not altered. Our findings suggest that PV interneurons may play a crucial role in mediating the HFD-induced olfactory deficit in adolescent mice, and can also serve a protective effect of EE against the functional deficit.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Ambiente , Interneuronas/metabolismo , Trastornos del Olfato/etiología , Trastornos del Olfato/terapia , Bulbo Olfatorio , Parvalbúminas/metabolismo , Factores de Edad , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Ratones , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/fisiopatología
12.
Anesthesiology ; 115(3): 604-13, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21670662

RESUMEN

BACKGROUND: A recent study has demonstrated that surgical incision induces an anxiety-like behavior but its relationship with incision-evoked mechanical hypersensitivity remains elusive. Extracellular signal-regulated kinase (ERK) activity in the anterior cingulate cortex (ACC) is important for the affective pain. The current study aims to explore ERK1/2 activity in the ACC and its role in the development of anxiety and mechanical hypersensitivity after incision. METHODS: Anxiety-like behavior was measured by elevated plus maze experiment and open field test after hind paw incision. ERK1/2 phosphorylation was determined by immunohistochemistry and Western blot. Cannulae were implanted into the bilateral ACC for the intra-ACC injection of ERK inhibitors PD98059 and U0126. Brushing (innocuous stimulus) was used to investigate its effect on ERK activation under the incision-evoked painful condition. RESULTS: The anxiety-like behavior induced by the hind paw incision persisted longer than mechanical hypersensitivity. One hind paw incision resulted in a biphasic ERK activation in bilateral ACC. Inhibiting ERK activation in the early phase attenuated pain-related anxiety and mechanical hypersensitivity whereas inhibiting ERK activation in the late phase only reduced the anxiety-like behavior. During the time interval between two phases of ERK activation, brushing the incised skin dramatically increased ERK phosphorylation in the ACC. CONCLUSIONS: These data suggest that in the early phase of postoperative pain, pain-related anxiety and mechanical hypersensitivity are tightly linked and regulated by the ERK activation in the ACC. However, in the late phase of postoperative pain, ERK activation in the ACC is only required for the expression of pain-related anxiety but not mechanical hypersensitivity.


Asunto(s)
Ansiedad/etiología , Conducta Animal/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Giro del Cíngulo/enzimología , Hiperalgesia/etiología , Dolor Postoperatorio/complicaciones , Animales , Ansiedad/psicología , Western Blotting , Butadienos/farmacología , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Flavonoides/farmacología , Pie/patología , Hiperalgesia/psicología , Inmunohistoquímica , Masculino , Actividad Motora/fisiología , Nitrilos/farmacología , Dimensión del Dolor/efectos de los fármacos , Dolor Postoperatorio/psicología , Fosforilación , Estimulación Física , Ratas , Ratas Sprague-Dawley
13.
Front Neurosci ; 15: 665757, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354558

RESUMEN

Sepsis-associated encephalopathy (SAE) is a risk factor for cognitive and memory dysfunction; however, the mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) was reported to have a positive effect on cognition and emotion regulation, but the study of its precursor, proBDNF, has been limited. This study aimed to elucidate the effects and associated mechanisms of hippocampal proBDNF in a lipopolysaccharide (LPS)-induced SAE mouse model. In this study, we found that the mice exhibited cognitive dysfunction on day 7 after LPS injection. The expression of proBDNF and its receptor, p75 NTR , was also increased in the hippocampus, while the levels of BDNF and its receptor, TrkB, were decreased. A co-localization study showed that proBDNF and p75 NTR were mainly co-localized with neurons. Furthermore, LPS treatment reduced the expression of NeuN, Nissl bodies, GluR4, NR1, NR2A, and NR2B in the hippocampus of SAE mice. Furthermore, an intrahippocampal or intraperitoneal injection of anti-proBDNF antibody was able to ameliorate LPS-induced cognitive dysfunction and restore the expression of NeuN, Nissl bodies, GluR4, NR1, NR2A, NR2B, and PSD95. These results indicated that treatment with brain delivery by an intrahippocampal and systemic injection of mAb-proBDNF may represent a potential therapeutic strategy for treating patients with SAE.

14.
Theranostics ; 11(2): 715-730, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391501

RESUMEN

Rationale: Brain-derived neurotrophic factor precursor (proBDNF) is expressed in the central nervous system (CNS) and the immune system. However, the role of proBDNF in the pathogenesis of multiple sclerosis (MS) is unknown. Methods: Peripheral blood and post-mortem brain and spinal cord specimens were obtained from multiple sclerosis patients to analyze proBDNF expression in peripheral lymphocytes and infiltrating immune cells in the lesion site. The proBDNF expression profile was also examined in the experimental autoimmune encephalomyelitis (EAE) mouse model, and polyclonal and monoclonal anti-proBDNF antibodies were used to explore their therapeutic effect in EAE. Finally, the role of proBDNF in the inflammatory immune activity of peripheral blood mononuclear cells (PBMCs) was verified in vitro experiments. Results: High proBDNF expression was detected in the circulating lymphocytes and infiltrated inflammatory cells at the lesion sites of the brain and spinal cord in MS patients. In the EAE mouse model, proBDNF was upregulated in CNS and in circulating and splenic lymphocytes. Systemic but not intracranial administration of anti-proBDNF blocking antibodies attenuated clinical scores, limited demyelination, and inhibited proinflammatory cytokines in EAE mice. Immuno-stimulants treatment increased the proBDNF release and upregulated the expression of p75 neurotrophic receptors (p75NTR) in lymphocytes. The monoclonal antibody against proBDNF inhibited the inflammatory response of PBMCs upon stimulations. Conclusion: The findings suggest that proBDNF from immune cells promotes the immunopathogenesis of MS. Monoclonal Ab-proB may be a promising therapeutic agent for treating MS.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Leucocitos Mononucleares/metabolismo , Leucocitos/metabolismo , Esclerosis Múltiple/patología , Precursores de Proteínas/metabolismo , Médula Espinal/metabolismo , Animales , Encéfalo/inmunología , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Humanos , Leucocitos/inmunología , Leucocitos Mononucleares/inmunología , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Médula Espinal/inmunología
15.
Neuropharmacology ; 184: 108410, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33242526

RESUMEN

Substantial evidence has revealed that abnormalities in synaptic plasticity play important roles during the process of depression. LASP1 (LIM and SH3 domain protein 1), a member of actin-binding proteins, has been shown to be associated with the regulation of synaptic plasticity. However, the role of LASP1 in the regulation of mood is still unclear. Here, using an unpredictable chronic mild stress (UCMS) paradigm, we found that the mRNA and protein levels of LASP1 were decreased in the hippocampus of stressed mice and that UCMS-induced down-regulation of LASP1 was abolished by chronic administration of fluoxetine. Adenosine-associated virus-mediated hippocampal LASP1 overexpression alleviated the UCMS-induced behavioral results of forced swimming test and sucrose preference test in stressed mice. It also restored the dendritic spine density, elevated the levels of AKT (a serine/threonine protein kinase), phosphorylated-AKT, insulin-like growth factor 2, and postsynaptic density protein 95. These findings suggest that LASP1 alleviates UCMS-provoked behavioral defects, which may be mediated by an enhanced dendritic spine density and more activated AKT-dependent LASP1 signaling, pointing to the antidepressant role of LASP1.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas con Dominio LIM/metabolismo , Estrés Psicológico/metabolismo , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Enfermedad Crónica , Depresión/tratamiento farmacológico , Depresión/metabolismo , Depresión/patología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/patología
16.
CNS Neurol Disord Drug Targets ; 20(3): 273-284, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32787766

RESUMEN

BACKGROUND: The long interspersed element-1 (L1) participates in memory formation, and DNA methylation patterns of L1 may suggest resilience or vulnerability factors for Post-Traumatic Stress Disorder (PTSD), of which the principal manifestation is a pathological exacerbation of fear memory. However, the unique roles of L1 in the reconsolidation of fear memory remain poorly understood. OBJECTIVE: The study aimed to investigate the role of L1 in the reconsolidation of context-dependent fear memory. METHODS: Mice underwent fear conditioning and fear recall in the observation chambers. Fear memory was assessed by calculating the percentage of time spent freezing in 5 min. The medial prefrontal cortex (mPFC) and hippocampus were removed for further analysis. Open Reading Frame 1 (ORF1) mRNA and ORF2 mRNA of L1 were analyzed by real-time quantitative polymerase chain reaction. After reactivation of fear memory, lamivudine was administered and its effects on fear memory reconsolidation were observed. RESULTS: ORF1 and ORF2 mRNA expressions in the mPFC and hippocampus after recent (24 h) and remote (14 days) fear memory recall exhibited augmentation via different temporal and spatial patterns. Reconsolidation of fear memory was markedly inhibited in mice treated with lamivudine, which could block L1. DNA methyltransferase mRNA expression declined following lamivudine treatment in remote fear memory recall. CONCLUSION: The retrotransposition of L1 participated in the reconsolidation of fear memory after reactivation of fear memory, and with lamivudine treatment, spontaneous recovery decreased with time after recent and remote fear memory recall, providing clues for understanding the roles of L1 in fear memory.


Asunto(s)
Miedo/efectos de los fármacos , Elementos de Nucleótido Esparcido Largo/efectos de los fármacos , Memoria/efectos de los fármacos , Animales , Hipocampo/efectos de los fármacos , Lamivudine/uso terapéutico , Masculino , Memoria a Largo Plazo/efectos de los fármacos , Ratones , Sistemas de Lectura Abierta/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Trastornos por Estrés Postraumático/tratamiento farmacológico
17.
Neuropharmacology ; 177: 108255, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32730819

RESUMEN

Fear extinction is an important preclinical model for behavior therapy in human anxiety disorders, such as post-traumatic stress disorder (PTSD). Histone acetylation is involved in the extinction of fear memory. As the "readers" of histone acetylation markers, the role of the bromodomain and extraterminal domain (BET) proteins in fear extinction is still unclear. In the present study, we found that suppression of BET proteins using small molecule JQ-1 had no effects on the acquisition of auditory fear or on the extinction of recent auditory fear, but it impaired the extinction of remote auditory fear. We found that insulin like growth factor 2 (IGF-2) mRNA and protein were up-regulated in the anterior cingulate cortex (ACC) after the extinction training of remote fear memory, and that this effect was inhibited by JQ-1 administration. Further, the local delivery of IGF-2 protein to the ACC region rescued the impaired extinction of remote memory caused by JQ-1 administration, which suggesting IGF-2 mediates the effects of JQ-1 on remote memory extinction. Gene expression profiling analysis demonstrated that JQ-1 treatment inhibited the up-regulated expression of a key set of neuroplasticity-related genes following remote memory extinction. Together, these findings establish BET proteins as epigenetic mediator for the extinction of remote fear memory. In particular, the findings of this study imply that as a prospective preclinical cancer drug, JQ-1 (or other BET bromodomain inhibitors) should be modified to prevent it from crossing the blood brain barrier and causing neurological side effects.


Asunto(s)
Azepinas/farmacología , Extinción Psicológica/fisiología , Miedo/fisiología , Factor II del Crecimiento Similar a la Insulina/metabolismo , Memoria a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Triazoles/farmacología , Animales , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Miedo/psicología , Masculino , Memoria a Largo Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Receptores de Superficie Celular/antagonistas & inhibidores
18.
Neurotox Res ; 38(2): 370-384, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32378057

RESUMEN

Major depression disorder is one of the most common psychiatric disorders that greatly threaten the mental health of a large population worldwide. Previous studies have shown that endoplasmic reticulum (ER) stress plays an important role in the pathophysiology of depression, and current research suggests that brain-derived neurotrophic factor precursor (proBDNF) is involved in the development of depression. However, the relationship between ER and proBDNF in the pathophysiology of depression is not well elucidated. Here, we treated primary hippocampal neurons of mice with corticosterone (CORT) and evaluated the relationship between proBDNF and ERS. Our results showed that CORT induced ERS and upregulated the expression of proBDNF and its receptor, Follistatin-like protein 4 (FSTL4), which contributed to significantly decreased neuronal viability and expression of synaptic-related proteins including NR2A, PSD95, and SYN. Anti-proBDNF neutralization and ISRIB (an inhibitor of the ERS) treatment, respective ly, protected neuronal viabilities and increased the expression of synaptic-related proteins in corticosterone-exposed neurons. ISRIB treatment reduced the expression of proBDNF and FSTL4, whereas anti-proBDNF treatment did not affect ERS markers (Grp78, p-PERK, ATF4) expression. Our study presented evidence that CORT-induced ERS negatively regulated the neuronal viability and the level of synaptic-related protein of primary neurons via the proBDNF/FSTL4 pathway.


Asunto(s)
Antiinflamatorios/farmacología , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Corticosterona/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hipocampo/citología , Neuronas/efectos de los fármacos , Precursores de Proteínas/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Trastorno Depresivo Mayor , Homólogo 4 de la Proteína Discs Large/efectos de los fármacos , Homólogo 4 de la Proteína Discs Large/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteínas Relacionadas con la Folistatina/efectos de los fármacos , Proteínas Relacionadas con la Folistatina/metabolismo , Ratones , Neuronas/metabolismo , Cultivo Primario de Células , Precursores de Proteínas/metabolismo , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinaptofisina/metabolismo
19.
Neurotox Res ; 38(4): 1063, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32948991

RESUMEN

Dr. Chang-Qi Li should be added as co-author because Fig. 1 originated from him.

20.
Biomed Res Int ; 2019: 8740674, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31380440

RESUMEN

Music exposure is known to play a positive role in learning and memory and can be a complementary treatment for anxiety and fear. However, whether juvenile music exposure affects adult behavior is not known. Two-week-old Sprague-Dawley rats were exposed to music for 2 hours daily or to background noise (controls) for a period of 3 weeks. At 60 days of age, rats were subjected to auditory fear conditioning, fear extinction training, and anxiety-like behavior assessments or to anterior cingulate cortex (ACC) brain-derived neurotrophic factor (BDNF) assays. We found that the music-exposed rats showed significantly less freezing behaviors during fear extinction training and spent more time in the open arm of the elevated plus maze after fear conditioning when compared with the control rats. Moreover, the BDNF levels in the ACC in the music group were significantly higher than those of the controls with the fear conditioning session. This result suggests that music exposure in juvenile rats decreases anxiety-like behaviors, facilitates fear extinction, and increases BDNF levels in the ACC in adulthood after a stressful event.


Asunto(s)
Ansiedad/terapia , Musicoterapia , Música , Trastornos Fóbicos/terapia , Animales , Ansiedad/fisiopatología , Modelos Animales de Enfermedad , Miedo/fisiología , Humanos , Memoria/fisiología , Trastornos Fóbicos/fisiopatología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA